wacc2 commited on
Commit
cb5a989
·
verified ·
1 Parent(s): 5da96f1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - pt
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - pearsonr
8
+ base_model:
9
+ - Qwen/Qwen2.5-1.5B-Instruct
10
+ pipeline_tag: text-generation
11
+ library_name: transformers
12
+ tags:
13
+ - text-generation-inference
14
+ license: apache-2.0
15
+ ---
16
+
17
+ ### Amadeus-Verbo-FI-Qwen2.5-1.5B-PT-BR-Instruct
18
+ #### Introduction
19
+ Amadeus-Verbo-FI-Qwen2.5-1.5B-PT-BR-Instruct is a Brazilian-Portuguese language model (PT-BR-LLM) developed from the base model Qwen2.5-1.5B-Instruct through fine-tuning, for 2 epochs, with 600k instructions dataset.
20
+ Read our article [here](https://www.).
21
+
22
+ ## Details
23
+
24
+ - **Architecture:** a Transformer-based model with RoPE, SwiGLU, RMSNorm, and Attention QKV bias pre-trained via Causal Language Modeling
25
+ - **Parameters:** 1.54B parameters
26
+ - **Number of Parameters (Non-Embedding):** 1.31B
27
+ - **Number of Layers:** 28
28
+ - **Number of Attention Heads (GQA):** 12 for Q and 2 for KV
29
+ - **Context length:** 32,768 tokens
30
+ - **Number of steps:** 78838
31
+ - **Language:** Brazilian Portuguese
32
+
33
+ #### Usage
34
+
35
+ You can use Amadeus-Verbo-FI-Qwen2.5-1.5B-PT-BR-Instruct with the latest HuggingFace Transformers library and we advise you to use the latest version of Transformers.
36
+
37
+ With transformers<4.37.0, you will encounter the following error:
38
+
39
+ KeyError: 'qwen2'
40
+
41
+ Below, we have provided a simple example of how to load the model and generate text:
42
+
43
+ #### Quickstart
44
+ The following code snippet uses `pipeline`, `AutoTokenizer`, `AutoModelForCausalLM` and apply_chat_template to show how to load the tokenizer, the model, and how to generate content.
45
+
46
+ Using the pipeline:
47
+ ```python
48
+ from transformers import pipeline
49
+
50
+ messages = [
51
+ {"role": "user", "content": "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana"},
52
+ ]
53
+ pipe = pipeline("text-generation", model="amadeusai/AV-FI-Qwen2.5-1.5B-PT-BR-Instruct")
54
+ pipe(messages)
55
+ ```
56
+ OR
57
+ ```python
58
+ from transformers import AutoModelForCausalLM, AutoTokenizer
59
+
60
+ model_name = "amadeusai/AV-FI-Qwen2.5-1.5B-PT-BR-Instruct"
61
+
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_name,
64
+ torch_dtype="auto",
65
+ device_map="auto"
66
+ )
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
68
+
69
+ prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana."
70
+ messages = [
71
+ {"role": "system", "content": "Você é um assistente útil."},
72
+ {"role": "user", "content": prompt}
73
+ ]
74
+ text = tokenizer.apply_chat_template(
75
+ messages,
76
+ tokenize=False,
77
+ add_generation_prompt=True
78
+ )
79
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
80
+
81
+ generated_ids = model.generate(
82
+ **model_inputs,
83
+ max_new_tokens=512
84
+ )
85
+ generated_ids = [
86
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
87
+ ]
88
+
89
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
90
+ ```
91
+ OR
92
+ ```python
93
+ from transformers import GenerationConfig, TextGenerationPipeline, AutoTokenizer, AutoModelForCausalLM
94
+ import torch
95
+
96
+ # Specify the model and tokenizer
97
+ model_id = "amadeusai/AV-FI-Qwen2.5-1.5B-PT-BR-Instruct"
98
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
99
+ model = AutoModelForCausalLM.from_pretrained(model_id)
100
+
101
+ # Specify the generation parameters as you like
102
+ generation_config = GenerationConfig(
103
+ **{
104
+ "do_sample": True,
105
+ "max_new_tokens": 512,
106
+ "renormalize_logits": True,
107
+ "repetition_penalty": 1.2,
108
+ "temperature": 0.1,
109
+ "top_k": 50,
110
+ "top_p": 1.0,
111
+ "use_cache": True,
112
+ }
113
+ )
114
+
115
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
116
+ generator = TextGenerationPipeline(model=model, task="text-generation", tokenizer=tokenizer, device=device)
117
+
118
+ # Generate text
119
+ prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana"
120
+ completion = generator(prompt, generation_config=generation_config)
121
+ print(completion[0]['generated_text'])
122
+ ```
123
+
124
+ #### Citation
125
+
126
+ If you find our work helpful, feel free to cite it.
127
+ ```
128
+ @misc{Amadeus AI,
129
+ title = {Amadeus Verbo: A Brazilian Portuguese large language model.},
130
+ url = {https://amadeus-ai.com},
131
+ author = {Amadeus AI},
132
+ month = {November},
133
+ year = {2024}
134
+ }
135
+ ```