--- language: - pt metrics: - accuracy - f1 - pearsonr base_model: - Qwen/Qwen2.5-1.5B-Instruct pipeline_tag: text-generation library_name: transformers tags: - text-generation-inference license: apache-2.0 --- ### Amadeus-Verbo-FI-Qwen2.5-1.5B-PT-BR-Instruct #### Introduction Amadeus-Verbo-FI-Qwen2.5-1.5B-PT-BR-Instruct is a Brazilian-Portuguese language model (PT-BR-LLM) developed from the base model Qwen2.5-1.5B-Instruct through fine-tuning, for 2 epochs, with 600k instructions dataset. Read our article [here](https://www.). ## Details - **Architecture:** a Transformer-based model with RoPE, SwiGLU, RMSNorm, and Attention QKV bias pre-trained via Causal Language Modeling - **Parameters:** 1.54B parameters - **Number of Parameters (Non-Embedding):** 1.31B - **Number of Layers:** 28 - **Number of Attention Heads (GQA):** 12 for Q and 2 for KV - **Context length:** 32,768 tokens - **Number of steps:** 78838 - **Language:** Brazilian Portuguese #### Usage You can use Amadeus-Verbo-FI-Qwen2.5-1.5B-PT-BR-Instruct with the latest HuggingFace Transformers library and we advise you to use the latest version of Transformers. With transformers<4.37.0, you will encounter the following error: KeyError: 'qwen2' Below, we have provided a simple example of how to load the model and generate text: #### Quickstart The following code snippet uses `pipeline`, `AutoTokenizer`, `AutoModelForCausalLM` and apply_chat_template to show how to load the tokenizer, the model, and how to generate content. Using the pipeline: ```python from transformers import pipeline messages = [ {"role": "user", "content": "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana"}, ] pipe = pipeline("text-generation", model="amadeusai/AV-FI-Qwen2.5-1.5B-PT-BR-Instruct") pipe(messages) ``` OR ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "amadeusai/AV-FI-Qwen2.5-1.5B-PT-BR-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana." messages = [ {"role": "system", "content": "Você é um assistente útil."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` OR ```python from transformers import GenerationConfig, TextGenerationPipeline, AutoTokenizer, AutoModelForCausalLM import torch # Specify the model and tokenizer model_id = "amadeusai/AV-FI-Qwen2.5-1.5B-PT-BR-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Specify the generation parameters as you like generation_config = GenerationConfig( **{ "do_sample": True, "max_new_tokens": 512, "renormalize_logits": True, "repetition_penalty": 1.2, "temperature": 0.1, "top_k": 50, "top_p": 1.0, "use_cache": True, } ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generator = TextGenerationPipeline(model=model, task="text-generation", tokenizer=tokenizer, device=device) # Generate text prompt = "Faça uma planilha nutricional para uma alimentação fitness e mediterrânea com todos os dias da semana" completion = generator(prompt, generation_config=generation_config) print(completion[0]['generated_text']) ``` #### Citation If you find our work helpful, feel free to cite it. ``` @misc{Amadeus AI, title = {Amadeus Verbo: A Brazilian Portuguese large language model.}, url = {https://amadeus-ai.com}, author = {Amadeus AI}, month = {November}, year = {2024} } ```