Update README.md
Browse files
README.md
CHANGED
@@ -1,74 +1,51 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
pipeline_tag: text-generation
|
5 |
-
base_model:
|
6 |
-
- google/gemma-2-2b
|
7 |
-
license: gemma
|
8 |
-
---
|
9 |
-
|
10 |
-
# gemma-2-2b-awq-uint4-asym-g128-lmhead-g32-fp16-onnx
|
11 |
-
- ## Introduction
|
12 |
-
This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset.
|
13 |
-
- ## Quantization Strategy
|
14 |
-
- ***Quantized Layers***: All linear layers
|
15 |
-
- ***Weight***: uint4 asymmetric per-group. group_size=32 for lm_head, and group_size=128 for the rest.
|
16 |
-
- ## Quick Start
|
17 |
-
1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html)
|
18 |
-
2. Run the quantization script in the example folder using the following command line:
|
19 |
-
```sh
|
20 |
-
export MODEL_DIR = [local model checkpoint folder] or google/gemma-2-2b
|
21 |
-
# single GPU
|
22 |
-
python quantize_quark.py --model_dir $MODEL_DIR \
|
23 |
-
--output_dir output_dir $MODEL_NAME-awq-uint4-asym-g128-lmhead-g32-fp16 \
|
24 |
-
--quant_scheme w_uint4_per_group_asym \
|
25 |
-
--num_calib_data 128 \
|
26 |
-
--quant_algo awq \
|
27 |
-
--dataset pileval_for_awq_benchmark \
|
28 |
-
--model_export hf_format \
|
29 |
-
--group_size 128 \
|
30 |
-
--group_size_per_layer lm_head 32 \
|
31 |
-
--data_type float32 \
|
32 |
-
--exclude_layers
|
33 |
-
# cpu
|
34 |
-
python quantize_quark.py --model_dir $MODEL_DIR \
|
35 |
-
--output_dir output_dir $MODEL_NAME-awq-uint4-asym-g128-lmhead-g32-fp16 \
|
36 |
-
--quant_scheme w_uint4_per_group_asym \
|
37 |
-
--num_calib_data 128 \
|
38 |
-
--quant_algo awq \
|
39 |
-
--dataset pileval_for_awq_benchmark \
|
40 |
-
--model_export hf_format \
|
41 |
-
--group_size 128 \
|
42 |
-
--group_size_per_layer lm_head 32 \
|
43 |
-
--data_type float32 \
|
44 |
-
--exclude_layers \
|
45 |
-
--device cpu
|
46 |
-
```
|
47 |
-
## Deployment
|
48 |
-
Quark has its own export format, quark_safetensors, which is compatible with autoAWQ exports.
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
#### Evaluation scores
|
53 |
-
<table>
|
54 |
-
<tr>
|
55 |
-
<td><strong>Benchmark</strong>
|
56 |
-
</td>
|
57 |
-
<td><strong>google/gemma-2-2b (float16)</strong>
|
58 |
-
</td>
|
59 |
-
<td><strong>amd/gemma-2-2b-awq-uint4-asym-g128-lmhead-g32-fp16-onnx (this model)</strong>
|
60 |
-
</td>
|
61 |
-
</tr>
|
62 |
-
<tr>
|
63 |
-
<td>Perplexity-wikitext2
|
64 |
-
</td>
|
65 |
-
<td>64.41
|
66 |
-
</td>
|
67 |
-
<td>71.43 (evalauted by CPU)
|
68 |
-
</td>
|
69 |
-
</tr>
|
70 |
-
|
71 |
-
</table>
|
72 |
-
|
73 |
-
#### License
|
74 |
-
Modifications copyright(c) 2024 Advanced Micro Devices,Inc. All rights reserved.
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
base_model:
|
6 |
+
- google/gemma-2-2b
|
7 |
+
license: gemma
|
8 |
+
---
|
9 |
+
|
10 |
+
# gemma-2-2b-awq-uint4-asym-g128-lmhead-g32-fp16-onnx
|
11 |
+
- ## Introduction
|
12 |
+
This model was created by applying [Quark](https://quark.docs.amd.com/latest/index.html) with calibration samples from Pile dataset.
|
13 |
+
- ## Quantization Strategy
|
14 |
+
- ***Quantized Layers***: All linear layers
|
15 |
+
- ***Weight***: uint4 asymmetric per-group. group_size=32 for lm_head, and group_size=128 for the rest.
|
16 |
+
- ## Quick Start
|
17 |
+
1. [Download and install Quark](https://quark.docs.amd.com/latest/install.html)
|
18 |
+
2. Run the quantization script in the example folder using the following command line:
|
19 |
+
```sh
|
20 |
+
export MODEL_DIR = [local model checkpoint folder] or google/gemma-2-2b
|
21 |
+
# single GPU
|
22 |
+
python quantize_quark.py --model_dir $MODEL_DIR \
|
23 |
+
--output_dir output_dir $MODEL_NAME-awq-uint4-asym-g128-lmhead-g32-fp16 \
|
24 |
+
--quant_scheme w_uint4_per_group_asym \
|
25 |
+
--num_calib_data 128 \
|
26 |
+
--quant_algo awq \
|
27 |
+
--dataset pileval_for_awq_benchmark \
|
28 |
+
--model_export hf_format \
|
29 |
+
--group_size 128 \
|
30 |
+
--group_size_per_layer lm_head 32 \
|
31 |
+
--data_type float32 \
|
32 |
+
--exclude_layers
|
33 |
+
# cpu
|
34 |
+
python quantize_quark.py --model_dir $MODEL_DIR \
|
35 |
+
--output_dir output_dir $MODEL_NAME-awq-uint4-asym-g128-lmhead-g32-fp16 \
|
36 |
+
--quant_scheme w_uint4_per_group_asym \
|
37 |
+
--num_calib_data 128 \
|
38 |
+
--quant_algo awq \
|
39 |
+
--dataset pileval_for_awq_benchmark \
|
40 |
+
--model_export hf_format \
|
41 |
+
--group_size 128 \
|
42 |
+
--group_size_per_layer lm_head 32 \
|
43 |
+
--data_type float32 \
|
44 |
+
--exclude_layers \
|
45 |
+
--device cpu
|
46 |
+
```
|
47 |
+
## Deployment
|
48 |
+
Quark has its own export format, quark_safetensors, which is compatible with autoAWQ exports.
|
49 |
+
|
50 |
+
#### License
|
51 |
+
Modifications copyright(c) 2025 Advanced Micro Devices,Inc. All rights reserved.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|