--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Math-1.5B-Instruct tags: - generated_from_trainer datasets: - train.jsonl model-index: - name: outputs/out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-Math-1.5B-Instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: false load_in_8bit: false load_in_4bit: false strict: false output_dir: ./outputs/out remove_unused_columns: false chat_template: qwen_25 # chat_template: qwen_25 datasets: - path: train.jsonl type: chat_template field_messages: messages message_field_role: role message_field_content: content roles: system: -system user: - user assistant: - assistant dataset_prepared_path: mr1-sft-1 # dataset_prepared_path: ko_r1 val_set_size: 0.005 eval_sample_packing: False overrides_of_model_config: # RoPE Scaling https://github.com/huggingface/transformers/pull/24653 rope_scaling: type: linear factor: 8.0 sequence_len: 32768 sample_packing: False pad_to_sequence_len: False wandb_project: MR1 wandb_entity: wandb_watch: wandb_name: wandb_log_model: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true gradient_accumulation_steps: 32 micro_batch_size: 2 eval_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 3 eval_max_new_tokens: 128 eval_table_size: saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.01 fsdp: fsdp_config: special_tokens: eos_token: ```

# outputs/out This model is a fine-tuned version of [Qwen/Qwen2.5-Math-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B-Instruct) on the train.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.6320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 32 - total_train_batch_size: 512 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 16 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5461 | 0.0093 | 1 | 4.5535 | | 1.4397 | 0.3362 | 36 | 1.3349 | | 0.8795 | 0.6723 | 72 | 0.8389 | | 0.7726 | 1.0 | 108 | 0.7298 | | 0.7374 | 1.3362 | 144 | 0.6811 | | 0.6928 | 1.6723 | 180 | 0.6554 | | 0.6742 | 2.0 | 216 | 0.6418 | | 0.691 | 2.3362 | 252 | 0.6349 | | 0.6656 | 2.6723 | 288 | 0.6320 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0