Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +432 -0
- config.json +27 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 2048,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": true,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:152913
|
8 |
+
- loss:BatchAllTripletLoss
|
9 |
+
base_model: Almawave/Velvet-2B
|
10 |
+
widget:
|
11 |
+
- source_sentence: La crisi non tocca il mercato del “luxury food”, che continua a
|
12 |
+
crescere
|
13 |
+
sentences:
|
14 |
+
- Avviso aggiornamento (1.55)
|
15 |
+
- Il fotoritocco sui social per fingere di essere al Mic
|
16 |
+
- Turchia, Biberovic giocherà da passaportato nella finestra FIBA
|
17 |
+
- source_sentence: 'Miller stagione finita, Pagani: «Rimpiazzo? Valutiamo il mercato
|
18 |
+
europeo»'
|
19 |
+
sentences:
|
20 |
+
- Beautiful, le trame della settimana dal 2 al 7 dicembre
|
21 |
+
- 'Corte dei conti: concorso per 8 funzionari a tempo indeterminato'
|
22 |
+
- 'Leonardo, AD: incontrato stamani numero uno Airbus su alleanza satellitare'
|
23 |
+
- source_sentence: 'Il segreto di Jalen Hurts in una foto sullo smartphone: così ha
|
24 |
+
vinto e sconfitto gli scettici'
|
25 |
+
sentences:
|
26 |
+
- Scarcerato il boss Ernesto Fazzalari, era il latitante più ricercato dopo Messina
|
27 |
+
Denaro
|
28 |
+
- 'UniVdA: ecco il nuovo master in Psicologia dello sport'
|
29 |
+
- 'Gran Turismo 7: arrivano quattro nuove auto con l’update 1.55 [VIDEO]'
|
30 |
+
- source_sentence: 'San Vito al Torre, recuperato un antico monumento funerario romano
|
31 |
+
dal fiume: la scoperta'
|
32 |
+
sentences:
|
33 |
+
- Charlotte Casiraghi in pubblico dopo le voci di divorzio
|
34 |
+
- Mr. Bezos, la sua non è imparzialità ma viltà
|
35 |
+
- 'Elisa Di Francisca a La Talpa: “Sono troppo vera per tenere segreti”'
|
36 |
+
- source_sentence: 'NBA, dopo l’addio a Schroeder i Nets promuovono Simmons in quintetto:
|
37 |
+
l''idea è correre'
|
38 |
+
sentences:
|
39 |
+
- 'Picasso a Milano: al Mudec la mostra sulle metamorfosi del maestro'
|
40 |
+
- Italia Viva e +Europa non parteciperanno alle elezioni regionali in Liguria
|
41 |
+
- 'Achille Costacurta rivela: «Sono stato rinchiuso per un anno e sette mesi in
|
42 |
+
un centro penale'
|
43 |
+
pipeline_tag: sentence-similarity
|
44 |
+
library_name: sentence-transformers
|
45 |
+
metrics:
|
46 |
+
- average_precision
|
47 |
+
- f1
|
48 |
+
- precision
|
49 |
+
- recall
|
50 |
+
- threshold
|
51 |
+
model-index:
|
52 |
+
- name: SentenceTransformer based on Almawave/Velvet-2B
|
53 |
+
results:
|
54 |
+
- task:
|
55 |
+
type: paraphrase-mining
|
56 |
+
name: Paraphrase Mining
|
57 |
+
dataset:
|
58 |
+
name: Unknown
|
59 |
+
type: unknown
|
60 |
+
metrics:
|
61 |
+
- type: average_precision
|
62 |
+
value: 0.5283532795784699
|
63 |
+
name: Average Precision
|
64 |
+
- type: f1
|
65 |
+
value: 0.5502357974952371
|
66 |
+
name: F1
|
67 |
+
- type: precision
|
68 |
+
value: 0.5567564151181899
|
69 |
+
name: Precision
|
70 |
+
- type: recall
|
71 |
+
value: 0.5438661480521084
|
72 |
+
name: Recall
|
73 |
+
- type: threshold
|
74 |
+
value: 0.9310455322265625
|
75 |
+
name: Threshold
|
76 |
+
---
|
77 |
+
|
78 |
+
# SentenceTransformer based on Almawave/Velvet-2B
|
79 |
+
|
80 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Almawave/Velvet-2B](https://huggingface.co/Almawave/Velvet-2B). It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
81 |
+
|
82 |
+
## Model Details
|
83 |
+
|
84 |
+
### Model Description
|
85 |
+
- **Model Type:** Sentence Transformer
|
86 |
+
- **Base model:** [Almawave/Velvet-2B](https://huggingface.co/Almawave/Velvet-2B) <!-- at revision 3b864694ae4d80923ac39cee130c5eeb7d8808b6 -->
|
87 |
+
- **Maximum Sequence Length:** 32768 tokens
|
88 |
+
- **Output Dimensionality:** 2048 dimensions
|
89 |
+
- **Similarity Function:** Cosine Similarity
|
90 |
+
<!-- - **Training Dataset:** Unknown -->
|
91 |
+
<!-- - **Language:** Unknown -->
|
92 |
+
<!-- - **License:** Unknown -->
|
93 |
+
|
94 |
+
### Model Sources
|
95 |
+
|
96 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
97 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
98 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
99 |
+
|
100 |
+
### Full Model Architecture
|
101 |
+
|
102 |
+
```
|
103 |
+
SentenceTransformer(
|
104 |
+
(0): Transformer({'max_seq_length': 32768, 'do_lower_case': False}) with Transformer model: MistralModel
|
105 |
+
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
|
106 |
+
(2): Normalize()
|
107 |
+
)
|
108 |
+
```
|
109 |
+
|
110 |
+
## Usage
|
111 |
+
|
112 |
+
### Direct Usage (Sentence Transformers)
|
113 |
+
|
114 |
+
First install the Sentence Transformers library:
|
115 |
+
|
116 |
+
```bash
|
117 |
+
pip install -U sentence-transformers
|
118 |
+
```
|
119 |
+
|
120 |
+
Then you can load this model and run inference.
|
121 |
+
```python
|
122 |
+
from sentence_transformers import SentenceTransformer
|
123 |
+
|
124 |
+
# Download from the 🤗 Hub
|
125 |
+
model = SentenceTransformer("ancc/Velvet-2B-embedding-news")
|
126 |
+
# Run inference
|
127 |
+
sentences = [
|
128 |
+
"NBA, dopo l’addio a Schroeder i Nets promuovono Simmons in quintetto: l'idea è correre",
|
129 |
+
'Italia Viva e +Europa non parteciperanno alle elezioni regionali in Liguria',
|
130 |
+
'Achille Costacurta rivela: «Sono stato rinchiuso per un anno e sette mesi in un centro penale',
|
131 |
+
]
|
132 |
+
embeddings = model.encode(sentences)
|
133 |
+
print(embeddings.shape)
|
134 |
+
# [3, 2048]
|
135 |
+
|
136 |
+
# Get the similarity scores for the embeddings
|
137 |
+
similarities = model.similarity(embeddings, embeddings)
|
138 |
+
print(similarities.shape)
|
139 |
+
# [3, 3]
|
140 |
+
```
|
141 |
+
|
142 |
+
<!--
|
143 |
+
### Direct Usage (Transformers)
|
144 |
+
|
145 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
146 |
+
|
147 |
+
</details>
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
### Downstream Usage (Sentence Transformers)
|
152 |
+
|
153 |
+
You can finetune this model on your own dataset.
|
154 |
+
|
155 |
+
<details><summary>Click to expand</summary>
|
156 |
+
|
157 |
+
</details>
|
158 |
+
-->
|
159 |
+
|
160 |
+
<!--
|
161 |
+
### Out-of-Scope Use
|
162 |
+
|
163 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
164 |
+
-->
|
165 |
+
|
166 |
+
## Evaluation
|
167 |
+
|
168 |
+
### Metrics
|
169 |
+
|
170 |
+
#### Paraphrase Mining
|
171 |
+
|
172 |
+
* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
|
173 |
+
|
174 |
+
| Metric | Value |
|
175 |
+
|:----------------------|:-----------|
|
176 |
+
| **average_precision** | **0.5284** |
|
177 |
+
| f1 | 0.5502 |
|
178 |
+
| precision | 0.5568 |
|
179 |
+
| recall | 0.5439 |
|
180 |
+
| threshold | 0.931 |
|
181 |
+
|
182 |
+
<!--
|
183 |
+
## Bias, Risks and Limitations
|
184 |
+
|
185 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
<!--
|
189 |
+
### Recommendations
|
190 |
+
|
191 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
192 |
+
-->
|
193 |
+
|
194 |
+
## Training Details
|
195 |
+
|
196 |
+
### Training Dataset
|
197 |
+
|
198 |
+
#### Unnamed Dataset
|
199 |
+
|
200 |
+
* Size: 152,913 training samples
|
201 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
202 |
+
* Approximate statistics based on the first 1000 samples:
|
203 |
+
| | sentence | label |
|
204 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
205 |
+
| type | string | int |
|
206 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 19.14 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~0.50%</li><li>1: ~0.50%</li><li>2: ~0.50%</li><li>3: ~0.50%</li><li>4: ~0.50%</li><li>5: ~0.20%</li><li>6: ~0.50%</li><li>7: ~0.50%</li><li>8: ~0.20%</li><li>9: ~0.50%</li><li>11: ~0.50%</li><li>12: ~0.50%</li><li>13: ~0.50%</li><li>15: ~0.50%</li><li>16: ~0.20%</li><li>17: ~0.30%</li><li>18: ~0.50%</li><li>19: ~0.40%</li><li>20: ~0.50%</li><li>21: ~0.50%</li><li>22: ~0.30%</li><li>23: ~0.50%</li><li>24: ~0.50%</li><li>25: ~0.50%</li><li>26: ~0.50%</li><li>27: ~0.50%</li><li>28: ~0.40%</li><li>29: ~0.50%</li><li>30: ~0.20%</li><li>31: ~0.30%</li><li>32: ~0.40%</li><li>33: ~0.50%</li><li>34: ~0.50%</li><li>36: ~0.50%</li><li>38: ~0.50%</li><li>39: ~0.50%</li><li>40: ~0.30%</li><li>41: ~0.20%</li><li>43: ~0.50%</li><li>44: ~0.50%</li><li>45: ~0.50%</li><li>46: ~0.40%</li><li>47: ~0.30%</li><li>48: ~0.30%</li><li>49: ~0.50%</li><li>50: ~0.30%</li><li>51: ~0.50%</li><li>52: ~0.50%</li><li>53: ~0.50%</li><li>54: ~0.50%</li><li>55: ~0.20%</li><li>56: ~0.50%</li><li>57: ~0.50%</li><li>59: ~0.50%</li><li>60: ~0.40%</li><li>62: ~0.50%</li><li>63: ~0.20%</li><li>64: ~0.50%</li><li>65: ~0.40%</li><li>66: ~0.50%</li><li>67: ~0.40%</li><li>68: ~0.50%</li><li>69: ~0.50%</li><li>70: ~0.50%</li><li>71: ~0.20%</li><li>72: ~0.50%</li><li>73: ~0.20%</li><li>74: ~0.50%</li><li>75: ~0.50%</li><li>77: ~0.50%</li><li>78: ~0.30%</li><li>79: ~0.50%</li><li>80: ~0.40%</li><li>81: ~0.30%</li><li>82: ~0.20%</li><li>83: ~0.40%</li><li>84: ~0.30%</li><li>85: ~0.50%</li><li>87: ~0.50%</li><li>88: ~0.20%</li><li>90: ~0.50%</li><li>91: ~0.20%</li><li>92: ~0.50%</li><li>93: ~0.40%</li><li>94: ~0.50%</li><li>95: ~0.50%</li><li>97: ~0.50%</li><li>98: ~0.40%</li><li>99: ~0.50%</li><li>100: ~0.30%</li><li>101: ~0.50%</li><li>103: ~0.20%</li><li>104: ~0.50%</li><li>106: ~0.40%</li><li>107: ~0.20%</li><li>108: ~0.40%</li><li>109: ~0.30%</li><li>110: ~0.50%</li><li>111: ~0.40%</li><li>112: ~0.50%</li><li>113: ~0.30%</li><li>115: ~0.30%</li><li>116: ~0.50%</li><li>117: ~0.50%</li><li>118: ~0.30%</li><li>120: ~0.30%</li><li>121: ~0.50%</li><li>122: ~0.20%</li><li>123: ~0.40%</li><li>124: ~0.30%</li><li>125: ~0.40%</li><li>126: ~0.50%</li><li>127: ~0.50%</li><li>128: ~0.50%</li><li>129: ~0.50%</li><li>130: ~0.50%</li><li>131: ~0.50%</li><li>132: ~0.40%</li><li>133: ~0.50%</li><li>134: ~0.30%</li><li>135: ~0.50%</li><li>136: ~0.30%</li><li>137: ~0.30%</li><li>138: ~0.50%</li><li>139: ~0.50%</li><li>140: ~0.20%</li><li>141: ~0.50%</li><li>142: ~0.50%</li><li>143: ~0.50%</li><li>144: ~0.30%</li><li>145: ~0.30%</li><li>146: ~0.30%</li><li>147: ~0.50%</li><li>148: ~0.30%</li><li>149: ~0.20%</li><li>150: ~0.50%</li><li>151: ~0.30%</li><li>152: ~0.20%</li><li>153: ~0.50%</li><li>154: ~0.50%</li><li>155: ~0.40%</li><li>156: ~0.20%</li><li>158: ~0.50%</li><li>159: ~0.50%</li><li>160: ~0.50%</li><li>161: ~0.40%</li><li>162: ~0.20%</li><li>163: ~0.40%</li><li>164: ~0.20%</li><li>165: ~0.50%</li><li>166: ~0.50%</li><li>167: ~0.50%</li><li>168: ~0.20%</li><li>169: ~0.50%</li><li>170: ~0.50%</li><li>171: ~0.20%</li><li>172: ~0.50%</li><li>173: ~0.50%</li><li>174: ~0.40%</li><li>175: ~0.50%</li><li>176: ~0.30%</li><li>178: ~0.50%</li><li>180: ~0.20%</li><li>182: ~0.50%</li><li>183: ~0.50%</li><li>184: ~0.30%</li><li>185: ~0.50%</li><li>187: ~0.20%</li><li>188: ~0.50%</li><li>189: ~0.50%</li><li>191: ~0.50%</li><li>192: ~0.50%</li><li>193: ~0.50%</li><li>194: ~0.20%</li><li>195: ~0.30%</li><li>196: ~0.50%</li><li>197: ~0.50%</li><li>199: ~0.50%</li><li>200: ~0.50%</li><li>201: ~0.20%</li><li>202: ~0.50%</li><li>203: ~0.50%</li><li>204: ~0.30%</li><li>205: ~0.50%</li><li>206: ~0.20%</li><li>207: ~0.40%</li><li>208: ~0.50%</li><li>209: ~0.30%</li><li>210: ~0.30%</li><li>211: ~0.50%</li><li>212: ~0.20%</li><li>213: ~0.50%</li><li>214: ~0.50%</li><li>215: ~0.40%</li><li>216: ~0.50%</li><li>217: ~0.40%</li><li>218: ~0.50%</li><li>219: ~0.50%</li><li>220: ~0.20%</li><li>221: ~0.50%</li><li>222: ~0.40%</li><li>223: ~0.50%</li><li>224: ~0.30%</li><li>225: ~0.40%</li><li>227: ~0.20%</li><li>228: ~0.30%</li><li>230: ~0.40%</li><li>231: ~0.40%</li><li>232: ~0.50%</li><li>233: ~0.50%</li><li>234: ~0.50%</li><li>235: ~0.50%</li><li>236: ~0.40%</li><li>237: ~0.50%</li><li>238: ~0.40%</li><li>239: ~0.50%</li><li>240: ~0.50%</li><li>241: ~0.50%</li><li>242: ~0.30%</li><li>243: ~0.50%</li><li>244: ~0.50%</li><li>245: ~0.50%</li><li>246: ~0.50%</li><li>247: ~0.20%</li><li>248: ~0.50%</li><li>249: ~0.50%</li><li>250: ~0.50%</li><li>251: ~0.50%</li><li>252: ~0.20%</li><li>253: ~0.50%</li><li>254: ~0.50%</li><li>255: ~0.30%</li><li>256: ~0.50%</li><li>257: ~0.50%</li><li>258: ~0.20%</li><li>259: ~0.50%</li><li>260: ~0.30%</li><li>261: ~0.50%</li><li>262: ~0.50%</li><li>263: ~0.20%</li><li>264: ~0.50%</li><li>265: ~0.20%</li></ul> |
|
207 |
+
* Samples:
|
208 |
+
| sentence | label |
|
209 |
+
|:-------------------------------------------------------------------------------------------|:---------------|
|
210 |
+
| <code>MERCATO LBA - Treviso, Giofrè: "Mercato in continua osservazione, vedremo..."</code> | <code>0</code> |
|
211 |
+
| <code>Ky Bowman: Non sono soddisfatto delle mie performance</code> | <code>0</code> |
|
212 |
+
| <code>LBA - Treviso, Giofrè: "Sabato la Reggiana, dobbiamo vincere. Punto"</code> | <code>0</code> |
|
213 |
+
* Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
|
214 |
+
|
215 |
+
### Evaluation Dataset
|
216 |
+
|
217 |
+
#### Unnamed Dataset
|
218 |
+
|
219 |
+
* Size: 9,310 evaluation samples
|
220 |
+
* Columns: <code>sentence</code> and <code>label</code>
|
221 |
+
* Approximate statistics based on the first 1000 samples:
|
222 |
+
| | sentence | label |
|
223 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
224 |
+
| type | string | int |
|
225 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 19.04 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>0: ~0.50%</li><li>1: ~0.30%</li><li>2: ~0.50%</li><li>4: ~0.50%</li><li>5: ~0.20%</li><li>6: ~0.30%</li><li>7: ~0.50%</li><li>8: ~0.50%</li><li>9: ~0.50%</li><li>10: ~0.50%</li><li>12: ~0.40%</li><li>13: ~0.30%</li><li>14: ~0.30%</li><li>15: ~0.40%</li><li>16: ~0.20%</li><li>17: ~0.50%</li><li>18: ~0.40%</li><li>19: ~0.40%</li><li>20: ~0.50%</li><li>21: ~0.50%</li><li>22: ~0.50%</li><li>23: ~0.50%</li><li>24: ~0.20%</li><li>25: ~0.20%</li><li>26: ~0.50%</li><li>27: ~0.50%</li><li>28: ~0.50%</li><li>30: ~0.50%</li><li>31: ~0.20%</li><li>32: ~0.30%</li><li>33: ~0.50%</li><li>34: ~0.20%</li><li>35: ~0.50%</li><li>37: ~0.50%</li><li>38: ~0.20%</li><li>39: ~0.50%</li><li>40: ~0.50%</li><li>41: ~0.20%</li><li>42: ~0.30%</li><li>43: ~0.30%</li><li>44: ~0.50%</li><li>45: ~0.30%</li><li>46: ~0.50%</li><li>47: ~0.50%</li><li>48: ~0.30%</li><li>49: ~0.40%</li><li>50: ~0.30%</li><li>51: ~0.20%</li><li>52: ~0.50%</li><li>53: ~0.20%</li><li>54: ~0.30%</li><li>55: ~0.50%</li><li>56: ~0.50%</li><li>57: ~0.20%</li><li>58: ~0.50%</li><li>59: ~0.50%</li><li>60: ~0.50%</li><li>61: ~0.30%</li><li>62: ~0.30%</li><li>63: ~0.20%</li><li>65: ~0.50%</li><li>67: ~0.40%</li><li>68: ~0.50%</li><li>69: ~0.50%</li><li>70: ~0.20%</li><li>71: ~0.40%</li><li>72: ~0.50%</li><li>73: ~0.50%</li><li>74: ~0.30%</li><li>77: ~0.20%</li><li>78: ~0.50%</li><li>79: ~0.50%</li><li>80: ~0.20%</li><li>81: ~0.50%</li><li>82: ~0.20%</li><li>83: ~0.50%</li><li>84: ~0.50%</li><li>85: ~0.50%</li><li>89: ~0.20%</li><li>90: ~0.50%</li><li>91: ~0.50%</li><li>92: ~0.30%</li><li>93: ~0.40%</li><li>94: ~0.50%</li><li>95: ~0.30%</li><li>96: ~0.20%</li><li>97: ~0.50%</li><li>98: ~0.20%</li><li>99: ~0.50%</li><li>100: ~0.50%</li><li>101: ~0.50%</li><li>102: ~0.50%</li><li>103: ~0.30%</li><li>104: ~0.50%</li><li>105: ~0.50%</li><li>106: ~0.50%</li><li>107: ~0.50%</li><li>108: ~0.50%</li><li>109: ~0.50%</li><li>110: ~0.20%</li><li>111: ~0.50%</li><li>112: ~0.50%</li><li>113: ~0.20%</li><li>114: ~0.50%</li><li>115: ~0.40%</li><li>116: ~0.50%</li><li>117: ~0.20%</li><li>118: ~0.50%</li><li>120: ~0.50%</li><li>121: ~0.30%</li><li>122: ~0.50%</li><li>123: ~0.40%</li><li>124: ~0.20%</li><li>125: ~0.50%</li><li>126: ~0.20%</li><li>129: ~0.50%</li><li>130: ~0.30%</li><li>131: ~0.50%</li><li>132: ~0.40%</li><li>133: ~0.50%</li><li>134: ~0.50%</li><li>135: ~0.50%</li><li>136: ~0.20%</li><li>137: ~0.30%</li><li>138: ~0.50%</li><li>140: ~0.30%</li><li>141: ~0.30%</li><li>142: ~0.50%</li><li>143: ~0.40%</li><li>144: ~0.50%</li><li>145: ~0.50%</li><li>146: ~0.30%</li><li>147: ~0.20%</li><li>148: ~0.50%</li><li>149: ~0.40%</li><li>150: ~0.50%</li><li>151: ~0.20%</li><li>152: ~0.50%</li><li>154: ~0.20%</li><li>155: ~0.20%</li><li>156: ~0.50%</li><li>157: ~0.50%</li><li>158: ~0.50%</li><li>159: ~0.50%</li><li>160: ~0.20%</li><li>162: ~0.50%</li><li>163: ~0.20%</li><li>164: ~0.20%</li><li>165: ~0.20%</li><li>166: ~0.20%</li><li>167: ~0.30%</li><li>168: ~0.50%</li><li>169: ~0.50%</li><li>170: ~0.50%</li><li>171: ~0.40%</li><li>172: ~0.30%</li><li>173: ~0.50%</li><li>174: ~0.50%</li><li>175: ~0.30%</li><li>176: ~0.50%</li><li>178: ~0.50%</li><li>179: ~0.20%</li><li>180: ~0.50%</li><li>181: ~0.50%</li><li>182: ~0.30%</li><li>183: ~0.40%</li><li>184: ~0.20%</li><li>185: ~0.50%</li><li>186: ~0.50%</li><li>187: ~0.50%</li><li>188: ~0.20%</li><li>189: ~0.50%</li><li>191: ~0.20%</li><li>192: ~0.50%</li><li>193: ~0.20%</li><li>194: ~0.20%</li><li>195: ~0.40%</li><li>196: ~0.20%</li><li>197: ~0.20%</li><li>198: ~0.50%</li><li>199: ~0.40%</li><li>200: ~0.50%</li><li>201: ~0.50%</li><li>202: ~0.50%</li><li>203: ~0.40%</li><li>205: ~0.50%</li><li>206: ~0.50%</li><li>207: ~0.50%</li><li>208: ~0.50%</li><li>209: ~0.50%</li><li>210: ~0.50%</li><li>211: ~0.40%</li><li>212: ~0.50%</li><li>213: ~0.50%</li><li>214: ~0.20%</li><li>215: ~0.20%</li><li>216: ~0.50%</li><li>217: ~0.50%</li><li>218: ~0.50%</li><li>219: ~0.30%</li><li>220: ~0.50%</li><li>221: ~0.50%</li><li>223: ~0.50%</li><li>224: ~0.50%</li><li>225: ~0.50%</li><li>227: ~0.20%</li><li>228: ~0.50%</li><li>230: ~0.20%</li><li>231: ~0.50%</li><li>232: ~0.50%</li><li>234: ~0.30%</li><li>235: ~0.40%</li><li>236: ~0.50%</li><li>237: ~0.50%</li><li>238: ~0.20%</li><li>239: ~0.50%</li><li>240: ~0.20%</li><li>241: ~0.50%</li><li>242: ~0.20%</li><li>243: ~0.20%</li><li>244: ~0.20%</li><li>246: ~0.50%</li><li>247: ~0.20%</li><li>248: ~0.50%</li><li>249: ~0.50%</li><li>250: ~0.40%</li><li>251: ~0.50%</li><li>252: ~0.50%</li><li>253: ~0.20%</li><li>254: ~0.50%</li><li>255: ~0.50%</li><li>256: ~0.50%</li><li>257: ~0.50%</li><li>258: ~0.20%</li><li>259: ~0.20%</li><li>260: ~0.50%</li><li>261: ~0.50%</li><li>262: ~0.20%</li><li>263: ~0.40%</li><li>264: ~0.50%</li><li>265: ~0.50%</li><li>266: ~0.50%</li><li>267: ~0.50%</li><li>268: ~0.20%</li><li>269: ~0.20%</li><li>270: ~0.40%</li><li>272: ~0.30%</li><li>273: ~0.20%</li><li>274: ~0.50%</li><li>275: ~0.50%</li><li>276: ~0.40%</li><li>277: ~0.30%</li><li>278: ~0.30%</li></ul> |
|
226 |
+
* Samples:
|
227 |
+
| sentence | label |
|
228 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
|
229 |
+
| <code>Supplenze: come funzionano i contratti fino al 31 dicembre 2024 e il calcolo del punteggio?</code> | <code>0</code> |
|
230 |
+
| <code>Docente non abilitato assunto a tempo determinato da concorso PNRR1: in quale scuola "andrò a finire" se nella mia si perde un posto?</code> | <code>0</code> |
|
231 |
+
| <code>Docenti non abilitati nominati dopo il 31 agosto da graduatorie pubblicate prima: otterranno sede di titolarità all’esito delle operazioni di mobilità [Chiarimenti]</code> | <code>0</code> |
|
232 |
+
* Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
|
233 |
+
|
234 |
+
### Training Hyperparameters
|
235 |
+
#### Non-Default Hyperparameters
|
236 |
+
|
237 |
+
- `per_device_train_batch_size`: 32
|
238 |
+
- `num_train_epochs`: 4
|
239 |
+
- `lr_scheduler_type`: cosine
|
240 |
+
- `warmup_ratio`: 0.25
|
241 |
+
- `seed`: 17
|
242 |
+
- `data_seed`: 17
|
243 |
+
- `bf16`: True
|
244 |
+
- `batch_sampler`: group_by_label
|
245 |
+
|
246 |
+
#### All Hyperparameters
|
247 |
+
<details><summary>Click to expand</summary>
|
248 |
+
|
249 |
+
- `overwrite_output_dir`: False
|
250 |
+
- `do_predict`: False
|
251 |
+
- `eval_strategy`: no
|
252 |
+
- `prediction_loss_only`: True
|
253 |
+
- `per_device_train_batch_size`: 32
|
254 |
+
- `per_device_eval_batch_size`: 8
|
255 |
+
- `per_gpu_train_batch_size`: None
|
256 |
+
- `per_gpu_eval_batch_size`: None
|
257 |
+
- `gradient_accumulation_steps`: 1
|
258 |
+
- `eval_accumulation_steps`: None
|
259 |
+
- `torch_empty_cache_steps`: None
|
260 |
+
- `learning_rate`: 5e-05
|
261 |
+
- `weight_decay`: 0.0
|
262 |
+
- `adam_beta1`: 0.9
|
263 |
+
- `adam_beta2`: 0.999
|
264 |
+
- `adam_epsilon`: 1e-08
|
265 |
+
- `max_grad_norm`: 1.0
|
266 |
+
- `num_train_epochs`: 4
|
267 |
+
- `max_steps`: -1
|
268 |
+
- `lr_scheduler_type`: cosine
|
269 |
+
- `lr_scheduler_kwargs`: {}
|
270 |
+
- `warmup_ratio`: 0.25
|
271 |
+
- `warmup_steps`: 0
|
272 |
+
- `log_level`: passive
|
273 |
+
- `log_level_replica`: warning
|
274 |
+
- `log_on_each_node`: True
|
275 |
+
- `logging_nan_inf_filter`: True
|
276 |
+
- `save_safetensors`: True
|
277 |
+
- `save_on_each_node`: False
|
278 |
+
- `save_only_model`: False
|
279 |
+
- `restore_callback_states_from_checkpoint`: False
|
280 |
+
- `no_cuda`: False
|
281 |
+
- `use_cpu`: False
|
282 |
+
- `use_mps_device`: False
|
283 |
+
- `seed`: 17
|
284 |
+
- `data_seed`: 17
|
285 |
+
- `jit_mode_eval`: False
|
286 |
+
- `use_ipex`: False
|
287 |
+
- `bf16`: True
|
288 |
+
- `fp16`: False
|
289 |
+
- `fp16_opt_level`: O1
|
290 |
+
- `half_precision_backend`: auto
|
291 |
+
- `bf16_full_eval`: False
|
292 |
+
- `fp16_full_eval`: False
|
293 |
+
- `tf32`: None
|
294 |
+
- `local_rank`: 0
|
295 |
+
- `ddp_backend`: None
|
296 |
+
- `tpu_num_cores`: None
|
297 |
+
- `tpu_metrics_debug`: False
|
298 |
+
- `debug`: []
|
299 |
+
- `dataloader_drop_last`: False
|
300 |
+
- `dataloader_num_workers`: 0
|
301 |
+
- `dataloader_prefetch_factor`: None
|
302 |
+
- `past_index`: -1
|
303 |
+
- `disable_tqdm`: False
|
304 |
+
- `remove_unused_columns`: True
|
305 |
+
- `label_names`: None
|
306 |
+
- `load_best_model_at_end`: False
|
307 |
+
- `ignore_data_skip`: False
|
308 |
+
- `fsdp`: []
|
309 |
+
- `fsdp_min_num_params`: 0
|
310 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
311 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
312 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
313 |
+
- `deepspeed`: None
|
314 |
+
- `label_smoothing_factor`: 0.0
|
315 |
+
- `optim`: adamw_torch
|
316 |
+
- `optim_args`: None
|
317 |
+
- `adafactor`: False
|
318 |
+
- `group_by_length`: False
|
319 |
+
- `length_column_name`: length
|
320 |
+
- `ddp_find_unused_parameters`: None
|
321 |
+
- `ddp_bucket_cap_mb`: None
|
322 |
+
- `ddp_broadcast_buffers`: False
|
323 |
+
- `dataloader_pin_memory`: True
|
324 |
+
- `dataloader_persistent_workers`: False
|
325 |
+
- `skip_memory_metrics`: True
|
326 |
+
- `use_legacy_prediction_loop`: False
|
327 |
+
- `push_to_hub`: False
|
328 |
+
- `resume_from_checkpoint`: None
|
329 |
+
- `hub_model_id`: None
|
330 |
+
- `hub_strategy`: every_save
|
331 |
+
- `hub_private_repo`: None
|
332 |
+
- `hub_always_push`: False
|
333 |
+
- `gradient_checkpointing`: False
|
334 |
+
- `gradient_checkpointing_kwargs`: None
|
335 |
+
- `include_inputs_for_metrics`: False
|
336 |
+
- `include_for_metrics`: []
|
337 |
+
- `eval_do_concat_batches`: True
|
338 |
+
- `fp16_backend`: auto
|
339 |
+
- `push_to_hub_model_id`: None
|
340 |
+
- `push_to_hub_organization`: None
|
341 |
+
- `mp_parameters`:
|
342 |
+
- `auto_find_batch_size`: False
|
343 |
+
- `full_determinism`: False
|
344 |
+
- `torchdynamo`: None
|
345 |
+
- `ray_scope`: last
|
346 |
+
- `ddp_timeout`: 1800
|
347 |
+
- `torch_compile`: False
|
348 |
+
- `torch_compile_backend`: None
|
349 |
+
- `torch_compile_mode`: None
|
350 |
+
- `dispatch_batches`: None
|
351 |
+
- `split_batches`: None
|
352 |
+
- `include_tokens_per_second`: False
|
353 |
+
- `include_num_input_tokens_seen`: False
|
354 |
+
- `neftune_noise_alpha`: None
|
355 |
+
- `optim_target_modules`: None
|
356 |
+
- `batch_eval_metrics`: False
|
357 |
+
- `eval_on_start`: False
|
358 |
+
- `use_liger_kernel`: False
|
359 |
+
- `eval_use_gather_object`: False
|
360 |
+
- `average_tokens_across_devices`: False
|
361 |
+
- `prompts`: None
|
362 |
+
- `batch_sampler`: group_by_label
|
363 |
+
- `multi_dataset_batch_sampler`: proportional
|
364 |
+
|
365 |
+
</details>
|
366 |
+
|
367 |
+
### Training Logs
|
368 |
+
| Epoch | Step | Training Loss | Validation Loss | average_precision |
|
369 |
+
|:------:|:-----:|:-------------:|:---------------:|:-----------------:|
|
370 |
+
| 0.0002 | 1 | 0.0521 | - | - |
|
371 |
+
| 0.8002 | 3824 | 0.0195 | - | - |
|
372 |
+
| 1.7732 | 7648 | 0.0071 | - | - |
|
373 |
+
| 2.7462 | 11472 | 0.0052 | - | - |
|
374 |
+
| 3.7192 | 15296 | 0.0046 | - | - |
|
375 |
+
| 3.8272 | 15812 | - | 0.0011 | 0.5284 |
|
376 |
+
|
377 |
+
|
378 |
+
### Framework Versions
|
379 |
+
- Python: 3.12.8
|
380 |
+
- Sentence Transformers: 3.4.1
|
381 |
+
- Transformers: 4.48.3
|
382 |
+
- PyTorch: 2.6.0+cu124
|
383 |
+
- Accelerate: 1.3.0
|
384 |
+
- Datasets: 3.2.0
|
385 |
+
- Tokenizers: 0.21.0
|
386 |
+
|
387 |
+
## Citation
|
388 |
+
|
389 |
+
### BibTeX
|
390 |
+
|
391 |
+
#### Sentence Transformers
|
392 |
+
```bibtex
|
393 |
+
@inproceedings{reimers-2019-sentence-bert,
|
394 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
395 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
396 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
397 |
+
month = "11",
|
398 |
+
year = "2019",
|
399 |
+
publisher = "Association for Computational Linguistics",
|
400 |
+
url = "https://arxiv.org/abs/1908.10084",
|
401 |
+
}
|
402 |
+
```
|
403 |
+
|
404 |
+
#### BatchAllTripletLoss
|
405 |
+
```bibtex
|
406 |
+
@misc{hermans2017defense,
|
407 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
408 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
409 |
+
year={2017},
|
410 |
+
eprint={1703.07737},
|
411 |
+
archivePrefix={arXiv},
|
412 |
+
primaryClass={cs.CV}
|
413 |
+
}
|
414 |
+
```
|
415 |
+
|
416 |
+
<!--
|
417 |
+
## Glossary
|
418 |
+
|
419 |
+
*Clearly define terms in order to be accessible across audiences.*
|
420 |
+
-->
|
421 |
+
|
422 |
+
<!--
|
423 |
+
## Model Card Authors
|
424 |
+
|
425 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
426 |
+
-->
|
427 |
+
|
428 |
+
<!--
|
429 |
+
## Model Card Contact
|
430 |
+
|
431 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
432 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Almawave/Velvet-2B",
|
3 |
+
"architectures": [
|
4 |
+
"MistralModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"head_dim": 64,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 2048,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 8192,
|
14 |
+
"max_position_embeddings": 32768,
|
15 |
+
"model_type": "mistral",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 100000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.48.3",
|
25 |
+
"use_cache": false,
|
26 |
+
"vocab_size": 126976
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67b5116d7db9697ff853fd6a9717a137c827ff9959918b2ce90c1bcba5cfcf0c
|
3 |
+
size 3926129848
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 32768,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|