--- language: - vi base_model: openai/whisper-small-vi-v2 tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Small Vi - Anh Phuong results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google fleurs type: google/fleurs config: vi_vn split: None args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 14.430800123571208 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Vi - Anh Phuong This model is a fine-tuned version of [openai/whisper-small-vi-v2](https://huggingface.co/openai/whisper-small-vi-v2) on the Google fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4633 - Wer: 14.4308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0133 | 4.7619 | 1000 | 0.3913 | 15.3383 | | 0.0009 | 9.5238 | 2000 | 0.4180 | 14.3227 | | 0.0006 | 14.2857 | 3000 | 0.4382 | 14.6162 | | 0.0003 | 19.0476 | 4000 | 0.4496 | 14.4269 | | 0.0002 | 23.8095 | 5000 | 0.4594 | 14.4578 | | 0.0002 | 28.5714 | 6000 | 0.4633 | 14.4308 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1