aryan27 commited on
Commit
0a7b5ae
·
verified ·
1 Parent(s): b905fe2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -198
README.md CHANGED
@@ -1,207 +1,92 @@
1
- HEAD
2
- # Lora-Therapist
3
- Meet Lora - Your Own Therapist, a fine-tuned LLM on the data-set of therapy sessions. It uses Parameter Efficient fine tuning (PEFT). Using Low Rank Adaptation where we only train a particular number of parameters, we trained Meta Llama 7b on Tesla T4 GPU. The dataset can be found on HuggingFace.
4
- =======
5
  ---
6
- base_model: meta-llama/Llama-2-7b-hf
 
 
 
 
 
 
 
 
 
7
  library_name: peft
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- # Model Card for Model ID
11
 
12
- <!-- Provide a quick summary of what the model is/does. -->
 
13
 
 
14
 
 
15
 
16
- ## Model Details
17
-
18
- ### Model Description
19
-
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
-
23
-
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
-
32
- ### Model Sources [optional]
33
-
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
-
40
- ## Uses
41
-
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
-
44
- ### Direct Use
45
-
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Downstream Use [optional]
51
-
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
-
54
- [More Information Needed]
55
-
56
- ### Out-of-Scope Use
57
-
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Bias, Risks, and Limitations
63
-
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
-
74
- ## How to Get Started with the Model
75
-
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
79
-
80
- ## Training Details
81
-
82
- ### Training Data
83
-
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
-
88
- ### Training Procedure
89
-
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
-
165
- [More Information Needed]
166
-
167
- #### Hardware
168
-
169
- [More Information Needed]
170
-
171
- #### Software
172
-
173
- [More Information Needed]
174
-
175
- ## Citation [optional]
176
-
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
178
-
179
- **BibTeX:**
180
-
181
- [More Information Needed]
182
-
183
- **APA:**
184
-
185
- [More Information Needed]
186
-
187
- ## Glossary [optional]
188
-
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
190
-
191
- [More Information Needed]
192
-
193
- ## More Information [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Authors [optional]
198
-
199
- [More Information Needed]
200
-
201
- ## Model Card Contact
202
-
203
- [More Information Needed]
204
- ### Framework versions
205
 
206
- - PEFT 0.15.2
207
- >>>>>>> 7eef288 (added adapters)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - peft
5
+ - lora
6
+ - mental-health
7
+ - therapy
8
+ - transformers
9
+ - llama
10
+ - 4-bit
11
+ - bitsandbytes
12
  library_name: peft
13
+ language:
14
+ - en
15
+ datasets:
16
+ - your-username/therapy-dataset
17
+ model_name: Meet Lora - Your Own Therapist
18
+ model_type: llama
19
+ inference: false
20
+ pipeline_tag: text-generation
21
  ---
22
 
23
+ # Meet Lora Your Own Therapist 🧠💬
24
 
25
+ **Meet Lora** is a fine-tuned LLM built to simulate a therapist, trained on a dataset of therapy sessions.
26
+ It leverages **Parameter-Efficient Fine-Tuning (PEFT)** using **LoRA (Low-Rank Adaptation)** on **Meta LLaMA 2 7B**.
27
 
28
+ The model was fine-tuned on a **Tesla T4 GPU**, selectively training a small number of parameters to efficiently adapt the base model to the domain of mental health and therapy.
29
 
30
+ > 💡 Dataset used is available on [Hugging Face 🤗](https://huggingface.co/datasets/your-username/therapy-dataset)
31
 
32
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ ## 🔧 How to Use
35
+
36
+ ```python
37
+ import torch
38
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
39
+ from peft import PeftModel
40
+
41
+ # Load the base model in 4-bit precision
42
+ bnb_config = BitsAndBytesConfig(
43
+ load_in_4bit=True,
44
+ bnb_4bit_use_double_quant=True,
45
+ bnb_4bit_compute_dtype=torch.float16,
46
+ bnb_4bit_quant_type="nf4"
47
+ )
48
+
49
+ base_model = AutoModelForCausalLM.from_pretrained(
50
+ "meta-llama/Llama-2-7b-hf",
51
+ quantization_config=bnb_config,
52
+ device_map="auto"
53
+ )
54
+
55
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
56
+
57
+ # Load the adapter
58
+ model = PeftModel.from_pretrained(base_model, "your-username/meet-lora-therapist")
59
+
60
+ # System prompt to guide behavior
61
+ system_prompt = (
62
+ "You are a compassionate and thoughtful therapist. "
63
+ "Your responses are empathetic, non-judgmental, and helpful."
64
+ )
65
+
66
+ # 🧩 Function to generate response
67
+ def generate_therapy_response(user_input: str):
68
+ prompt = f"{system_prompt}\nUser: {user_input}\nTherapist:"
69
+
70
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
71
+
72
+ with torch.no_grad():
73
+ outputs = model.generate(
74
+ **inputs,
75
+ max_new_tokens=200,
76
+ do_sample=True,
77
+ temperature=0.7,
78
+ top_p=0.9,
79
+ repetition_penalty=1.1,
80
+ pad_token_id=tokenizer.eos_token_id
81
+ )
82
+
83
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
84
+
85
+ # Strip off the prompt from the generated text
86
+ response_only = response.split("Therapist:")[-1].strip()
87
+
88
+ return response_only
89
+
90
+ # 💬 Example usage
91
+ response = generate_therapy_response("I feel demotivated because of my breakup")
92
+ print(response)