End of training
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -60,33 +60,28 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.0127 | 11.0 | 1243 | 0.6369 | 0.86 |
|
81 |
-
| 0.0095 | 12.0 | 1356 | 0.7710 | 0.87 |
|
82 |
-
| 0.0083 | 13.0 | 1469 | 0.7371 | 0.86 |
|
83 |
-
| 0.0082 | 14.0 | 1582 | 0.7961 | 0.86 |
|
84 |
-
| 0.008 | 15.0 | 1695 | 0.7633 | 0.84 |
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
- Pytorch 2.5.1+cu124
|
91 |
- Datasets 3.3.2
|
92 |
- Tokenizers 0.21.0
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.87
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.6047
|
37 |
+
- Accuracy: 0.87
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
60 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 10
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.353 | 1.0 | 113 | 1.4739 | 0.62 |
|
71 |
+
| 0.8942 | 2.0 | 226 | 1.0342 | 0.7 |
|
72 |
+
| 0.8116 | 3.0 | 339 | 0.9046 | 0.74 |
|
73 |
+
| 0.509 | 4.0 | 452 | 0.8493 | 0.75 |
|
74 |
+
| 0.3621 | 5.0 | 565 | 0.5743 | 0.83 |
|
75 |
+
| 0.1877 | 6.0 | 678 | 0.5558 | 0.83 |
|
76 |
+
| 0.1237 | 7.0 | 791 | 0.6280 | 0.81 |
|
77 |
+
| 0.0465 | 8.0 | 904 | 0.6802 | 0.83 |
|
78 |
+
| 0.0388 | 9.0 | 1017 | 0.5849 | 0.87 |
|
79 |
+
| 0.0362 | 10.0 | 1130 | 0.6047 | 0.87 |
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
83 |
|
84 |
+
- Transformers 4.48.3
|
85 |
- Pytorch 2.5.1+cu124
|
86 |
- Datasets 3.3.2
|
87 |
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94771728
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c28fedb23e2d9f235ee5e4a4e22f6a823cf0372d843d53e103905373783a3739
|
3 |
size 94771728
|
runs/Mar03_05-10-00_8d5bb58652ed/events.out.tfevents.1740978603.8d5bb58652ed.381.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a051b2d743ee51c82d9f293659d594a350419445e58d5570e5628950d93fc63
|
3 |
+
size 57447
|