from ultralytics import YOLO from PIL import Image import gradio as gr from huggingface_hub import snapshot_download import os #model_path = "/Users/markk/Downloads/best_int8_openvino_model" #model_path1 = "C:\Users\aungh\Downloads\6319250G\best_int8_openvino_model" # Define the path to the YOLOv8 mo model_path = "best_int8_openvino_model" #Organizations model path location MODEL_REPO_ID = "aunghlaing/testmodel" #load model def load_model(repo_id): download_dir = snapshot_download(repo_id) print(download_dir) path = os.path.join(download_dir, "best_int8_openvino_model") print(path) detection_model = YOLO(path, task='detect') return detection_model detection_model = load_model(MODEL_REPO_ID) #Student ID student_info = "Student Id: 6319250G, Name: AUNG HTUN" #prdeict def predict(pilimg): source = pilimg result = detection_model.predict(source, conf=0.5, iou=0.5) img_bgr = result[0].plot() out_pilimg = Image.fromarray(img_bgr[..., ::-1]) # RGB-order PIL image return out_pilimg #UI interface gr.Markdown("# Two Object Detection (Shark/Mask)") gr.Markdown(student_info) gr.Interface(fn=predict, inputs=gr.Image(type="pil",label="Input"), outputs=gr.Image(type="pil",label="Output"), title="Two Object Detection (Shark/Mask)", description=student_info, ).launch(share=True)