--- library_name: transformers license: mit base_model: indobenchmark/indobert-lite-base-p2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indobert-lite-base-p2 results: [] datasets: - indonlp/indonlu - SEACrowd/id_google_play_review language: - id pipeline_tag: text-classification --- # indobert-lite-base-p2 This model is a fine-tuned version of [indobenchmark/indobert-lite-base-p2](https://huggingface.co/indobenchmark/indobert-lite-base-p2) on the indonlu-smsa and id_google_play_review dataset. It achieves the following results on the evaluation set for combined dataset from indonlu-smsa and id_google_play_review: - Loss: 0.4257 - Accuracy: 0.9291 - Precision: 0.8637 - Recall: 0.8651 - F1: 0.8643 Seperate evaluation indonlu/indonlu-smsa - Accuracy: 0.9269 - Precision: 0.9067 - Recall: 0.8948 - F1: 0.89995 ## Model description https://huggingface.co/indobenchmark/indobert-lite-base-p2 To Do: - Add optimized model from optimum ## Intended uses & limitations Sentiment Analysis, this model more lightweight than bert base and roberta base ofc because this is lite model haha ## Training and evaluation data The training combined all training data from indonlu-smsa and id google play review The evaluation is conducted using the validation split ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0744 | 1.0 | 1127 | 0.3146 | 0.9309 | 0.8846 | 0.8549 | 0.8691 | | 0.056 | 2.0 | 2254 | 0.3321 | 0.9298 | 0.8737 | 0.8580 | 0.8650 | | 0.0299 | 3.0 | 3381 | 0.3906 | 0.9316 | 0.8750 | 0.8656 | 0.8702 | | 0.0317 | 4.0 | 4508 | 0.4257 | 0.9291 | 0.8637 | 0.8651 | 0.8643 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0