File size: 2,629 Bytes
09f8dfe
da6b311
d0a52b6
da6b311
 
d0a52b6
 
09f8dfe
 
e977129
09f8dfe
 
 
 
 
 
 
e977129
09f8dfe
da6b311
 
09f8dfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68aa91
09f8dfe
 
 
 
 
 
 
e68aa91
09f8dfe
 
 
 
da6b311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09f8dfe
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: google/mt5-base
license: apache-2.0
metrics:
- bleu
tags:
- generated_from_trainer
model-index:
- name: mt5-base-ainu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-ainu

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1105
- Bleu: 37.4939

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Bleu    |
|:-------------:|:-----:|:------:|:---------------:|:-------:|
| 2.1267        | 1.0   | 9341   | 1.8026          | 20.8450 |
| 1.6408        | 2.0   | 18682  | 1.4706          | 26.7109 |
| 1.4098        | 3.0   | 28023  | 1.3494          | 30.7048 |
| 1.2546        | 4.0   | 37364  | 1.2910          | 32.5056 |
| 1.124         | 5.0   | 46705  | 1.2617          | 33.7060 |
| 1.0048        | 6.0   | 56046  | 1.2578          | 34.5824 |
| 0.8872        | 7.0   | 65387  | 1.2639          | 35.1029 |
| 0.8103        | 8.0   | 74728  | 1.2955          | 35.7998 |
| 0.7298        | 9.0   | 84069  | 1.3284          | 35.8310 |
| 0.6494        | 10.0  | 93410  | 1.3780          | 36.3268 |
| 0.5696        | 11.0  | 102751 | 1.4343          | 36.2494 |
| 0.5148        | 12.0  | 112092 | 1.4957          | 36.8702 |
| 0.4487        | 13.0  | 121433 | 1.5511          | 36.8981 |
| 0.3941        | 14.0  | 130774 | 1.6235          | 36.8809 |
| 0.3432        | 15.0  | 140115 | 1.6957          | 37.0269 |
| 0.3023        | 16.0  | 149456 | 1.7935          | 37.1839 |
| 0.2614        | 17.0  | 158797 | 1.8619          | 37.1935 |
| 0.2267        | 18.0  | 168138 | 1.9485          | 37.4170 |
| 0.1996        | 19.0  | 177479 | 2.0348          | 37.3585 |
| 0.1746        | 20.0  | 186820 | 2.1105          | 37.4939 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1