File size: 2,629 Bytes
09f8dfe da6b311 d0a52b6 da6b311 d0a52b6 09f8dfe e977129 09f8dfe e977129 09f8dfe da6b311 09f8dfe e68aa91 09f8dfe e68aa91 09f8dfe da6b311 09f8dfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model: google/mt5-base
license: apache-2.0
metrics:
- bleu
tags:
- generated_from_trainer
model-index:
- name: mt5-base-ainu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-ainu
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1105
- Bleu: 37.4939
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu |
|:-------------:|:-----:|:------:|:---------------:|:-------:|
| 2.1267 | 1.0 | 9341 | 1.8026 | 20.8450 |
| 1.6408 | 2.0 | 18682 | 1.4706 | 26.7109 |
| 1.4098 | 3.0 | 28023 | 1.3494 | 30.7048 |
| 1.2546 | 4.0 | 37364 | 1.2910 | 32.5056 |
| 1.124 | 5.0 | 46705 | 1.2617 | 33.7060 |
| 1.0048 | 6.0 | 56046 | 1.2578 | 34.5824 |
| 0.8872 | 7.0 | 65387 | 1.2639 | 35.1029 |
| 0.8103 | 8.0 | 74728 | 1.2955 | 35.7998 |
| 0.7298 | 9.0 | 84069 | 1.3284 | 35.8310 |
| 0.6494 | 10.0 | 93410 | 1.3780 | 36.3268 |
| 0.5696 | 11.0 | 102751 | 1.4343 | 36.2494 |
| 0.5148 | 12.0 | 112092 | 1.4957 | 36.8702 |
| 0.4487 | 13.0 | 121433 | 1.5511 | 36.8981 |
| 0.3941 | 14.0 | 130774 | 1.6235 | 36.8809 |
| 0.3432 | 15.0 | 140115 | 1.6957 | 37.0269 |
| 0.3023 | 16.0 | 149456 | 1.7935 | 37.1839 |
| 0.2614 | 17.0 | 158797 | 1.8619 | 37.1935 |
| 0.2267 | 18.0 | 168138 | 1.9485 | 37.4170 |
| 0.1996 | 19.0 | 177479 | 2.0348 | 37.3585 |
| 0.1746 | 20.0 | 186820 | 2.1105 | 37.4939 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.19.0
- Tokenizers 0.19.1
|