banhabang commited on
Commit
7a55dc3
·
1 Parent(s): b3b43d2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -2
README.md CHANGED
@@ -27,12 +27,18 @@ Training hyperparameters
27
 
28
  The following hyperparameters were used during training:
29
 
30
- num_train_epochs=2, \n
31
- learning_rate=1e-5, \n
 
 
32
  warmup_ratio=0.05,
 
33
  weight_decay=0.01,
 
34
  per_device_train_batch_size=4,
 
35
  per_device_eval_batch_size=4,
 
36
  group_by_length=True,
37
 
38
  I also evaluated the model on 20K dataset of video from youtube. We extract the title and tags (if possible) which is the input of the model. With videos with tags, we directly compare our tags with the existing tags. Otherwise, the obtained tags are evaluated by human. We see the results on link: https://drive.google.com/drive/folders/1RvywNl41QYNa2lthp-O8hakVCMsfX456
@@ -44,11 +50,15 @@ I also evaluated the model on 20K dataset of video from youtube. We extract the
44
  How to use the model
45
 
46
  tokenizer = AutoTokenizer.from_pretrained("banhabang/vit5-base-tag-generation")
 
47
  model = AutoModelForSeq2SeqLM.from_pretrained("banhabang/vit5-base-tag-generation")
 
48
  model.to('cuda')
49
 
50
  encoding = tokenizer(ytb['Title'][i], return_tensors="pt")
 
51
  input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
 
52
  outputs = model.generate(
53
  input_ids=input_ids, attention_mask=attention_masks,
54
  max_length=30,
 
27
 
28
  The following hyperparameters were used during training:
29
 
30
+ num_train_epochs=2,
31
+
32
+ learning_rate=1e-5,
33
+
34
  warmup_ratio=0.05,
35
+
36
  weight_decay=0.01,
37
+
38
  per_device_train_batch_size=4,
39
+
40
  per_device_eval_batch_size=4,
41
+
42
  group_by_length=True,
43
 
44
  I also evaluated the model on 20K dataset of video from youtube. We extract the title and tags (if possible) which is the input of the model. With videos with tags, we directly compare our tags with the existing tags. Otherwise, the obtained tags are evaluated by human. We see the results on link: https://drive.google.com/drive/folders/1RvywNl41QYNa2lthp-O8hakVCMsfX456
 
50
  How to use the model
51
 
52
  tokenizer = AutoTokenizer.from_pretrained("banhabang/vit5-base-tag-generation")
53
+
54
  model = AutoModelForSeq2SeqLM.from_pretrained("banhabang/vit5-base-tag-generation")
55
+
56
  model.to('cuda')
57
 
58
  encoding = tokenizer(ytb['Title'][i], return_tensors="pt")
59
+
60
  input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
61
+
62
  outputs = model.generate(
63
  input_ids=input_ids, attention_mask=attention_masks,
64
  max_length=30,