{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d424dcb9640>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689841393865169138, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKxJD8AZdgNADNDnv9Ig07/M+je+pwZTPcq0fT69YUY/sYDbvqsAXbyCvWq/hvuFvMQjor+LejE7Tn0jPyXjnzywHPG+OuOlOv5SfT8Pj4M8OT82v62RljwOxoq/eBuGvKErhD+4wBg/LiLzPhmhhj+XuuE/tpUMv/4l3T6itMW/dK8cP0v6rMDRZrc/N6Shvgm5QD8Gaky+qzvEP7dgOT+856K/qV7yPRMxIECuUbQ8UPgawGWgVT5ECCJA1bEiwDspnT92p2a/OF8NwF3IiT8e7He/OoTWvxDGBsDvZHO/0sLJPwqHDkD0+BbAcpddPpjERUAEe64+eQG2vgGlIT/B0Yu/UKKLv6iK+b50PpA/MxocQOrPVz9USjS+RlfaPor8mz+m+Ca/6N7mv82f6r6k7C2/p2IEP0MOIkAinQu+Hux3vzqE1r8QxgbAGaGGP2M+Dj8WuwNAL1bpv24fgzy9J8G/+AcIP/5gpr4udk4/eEP5v3/1Mb5aAyg+wHy+Pu6AIL/7Ysm/YP65vmkTMr79y+q9h+ZSv01Htb/ZaE0/XHGkP7xJCkDlRJq/rklWwKErhD86hNa/LiLzPu9kc7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOH840AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYB6gPQAAAAC4R+m/AAAAAInior0AAAAAnzj5PwAAAADTQWs9AAAAAP+UAEAAAAAAkID4vQAAAADKq/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsi6HtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHIrtTwAAAAAjR7dvwAAAABsQom9AAAAACiN/z8AAAAASXAOPgAAAACzMeU/AAAAAFzxaD0AAAAAnInpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqFk7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB1WIq9AAAAAHvE3b8AAAAAS+MzvQAAAACeHf0/AAAAABH8m70AAAAAr1rePwAAAAC6QgY+AAAAAG66/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQk4i2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA29ikvQAAAACgd+O/AAAAADODk70AAAAAUBfkPwAAAAAgsIG9AAAAAKhp5T8AAAAAc0zxPQAAAACaAeC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ8ies1baAaMAWyUTegDjAF0lEdAsEYu4XoC+3V9lChoBkdAmpDS2lVLjGgHTegDaAhHQLBHJc0Ltu11fZQoaAZHQEwLgUDdP+JoB0t4aAhHQLBIIPVurIZ1fZQoaAZHQJ6igInjQzFoB03oA2gIR0CwSlhzijtYdX2UKGgGR0Ca/TwYcebNaAdN6ANoCEdAsEqITcqOLnV9lChoBkdAhvEhqCYkV2gHTegDaAhHQLBPaYtg8bJ1fZQoaAZHQJ/g1NVR1oxoB03oA2gIR0CwUVTQVsUJdX2UKGgGR0CdftiExqO+aAdN6ANoCEdAsFOF3qzJIXV9lChoBkdAn7a75VOsT2gHTegDaAhHQLBTurOJLuh1fZQoaAZHQJhr5XGOuJVoB03oA2gIR0CwVzc6RyOrdX2UKGgGR0CYBqTBqKxcaAdN6ANoCEdAsFk5hkRSP3V9lChoBkdAlL6L1/Ue+2gHTegDaAhHQLBcePbfxc51fZQoaAZHQJwMskpqh11oB03oA2gIR0CwXMbcO9WZdX2UKGgGR0CcbSTmW+oMaAdN6ANoCEdAsGBwHQhOg3V9lChoBkdAmFe+Dzyz5WgHTegDaAhHQLBiXnTRYzV1fZQoaAZHQJvmkBuGbkRoB03oA2gIR0CwZIygwoLHdX2UKGgGR0CaWBqqfe1saAdN6ANoCEdAsGS/ronrp3V9lChoBkdAnhZel0o0AWgHTegDaAhHQLBo7961LJ11fZQoaAZHQJ5mo1baAWloB03oA2gIR0Cwa6eYQarFdX2UKGgGR0CfM24h2W6caAdN6ANoCEdAsG3mTdLxqnV9lChoBkdAnaw8mKIi1WgHTegDaAhHQLBuFwG4ZuR1fZQoaAZHQJ+VHT2FnI1oB03oA2gIR0Cwca7GWD6FdX2UKGgGR0CfPGFKTSssaAdN6ANoCEdAsHOILYwqRXV9lChoBkdAnQ1PkBCD3GgHTegDaAhHQLB15EL6UJR1fZQoaAZHQJxY+4YrJ8xoB03oA2gIR0CwdidAxBVudX2UKGgGR0Ceo723rleXaAdN6ANoCEdAsHq/Lt/nXHV9lChoBkdAnUyuoUBXCGgHTegDaAhHQLB8lGH58Bx1fZQoaAZHQJ8L62d/axpoB03oA2gIR0CwfqLKzRhMdX2UKGgGR0CY4iNG3F1kaAdN6ANoCEdAsH7R8pkPMHV9lChoBkdAnAaETQE6k2gHTegDaAhHQLCCSUEgW8B1fZQoaAZHQJnSWkyk9EFoB03oA2gIR0CwhHbypaRqdX2UKGgGR0CbK5HMUypJaAdN6ANoCEdAsIeedupCKXV9lChoBkdAnPgJC4SYgWgHTegDaAhHQLCH0D9Oymh1fZQoaAZHQJlKOhlDneVoB03oA2gIR0Cwi1e+dsi0dX2UKGgGR0CQBGiyprDZaAdN6ANoCEdAsI1LhCMP0HV9lChoBkdAk9lU5Qxes2gHTegDaAhHQLCPbWcBltl1fZQoaAZHQJDfjWlMyrRoB03oA2gIR0Cwj50s8PnTdX2UKGgGR0CZefWRzRx+aAdN6ANoCEdAsJOxON5t33V9lChoBkdAkDk03CKrJmgHTegDaAhHQLCWS7TlT3t1fZQoaAZHQJe1OteUpuxoB03oA2gIR0CwmHItL+PzdX2UKGgGR0CXc1eNT987aAdN6ANoCEdAsJijBbfP5nV9lChoBkdAlojtUXHim2gHTegDaAhHQLCcE75Ec811fZQoaAZHQJdmN6gM+eRoB03oA2gIR0Cwnfklme18dX2UKGgGR0CbWnfCyhSMaAdN6ANoCEdAsKBLjDKoynV9lChoBkdAmLhXzYmLL2gHTegDaAhHQLCgjebNKRN1fZQoaAZHQJxqpR51Ng1oB03oA2gIR0CwpSt7jT8YdX2UKGgGR0CKPBZfUnXvaAdN6ANoCEdAsKcYH9m6G3V9lChoBkdAjWCM3ZPEbmgHTegDaAhHQLCpylpoK2N1fZQoaAZHQIagb8rI5o5oB03oA2gIR0CwqhCYG+sYdX2UKGgGR0CZYa7W/ag3aAdN6ANoCEdAsK6rE0iyIHV9lChoBkdAmdfD5sTFl2gHTegDaAhHQLCxY2HLzPN1fZQoaAZHQJomoy9EkSpoB03oA2gIR0Cws8JUDMePdX2UKGgGR0CXt3WilBQfaAdN6ANoCEdAsLPy4qgAZXV9lChoBkdAmPc7OVxCIGgHTegDaAhHQLC3afGdZq51fZQoaAZHQJmVzzz3AVRoB03oA2gIR0CwuUPi5uqFdX2UKGgGR0CSehqJdjXnaAdN6ANoCEdAsLtjpNbkfnV9lChoBkdAlqF0RaouPGgHTegDaAhHQLC7lZZ0Syt1fZQoaAZHQI0oP7BO58VoB03oA2gIR0CwwJDkyULVdX2UKGgGR0CRpQv+fh/BaAdN6ANoCEdAsMKDUvwmV3V9lChoBkdAiSyH5JsfrGgHTegDaAhHQLDEr7eEZix1fZQoaAZHQIgeecJ+lTFoB03oA2gIR0CwxN24I8hcdX2UKGgGR0Ca8yKTB68haAdN6ANoCEdAsMhhfv4M4XV9lChoBkdAk0701EVnEmgHTegDaAhHQLDKSe2d/ax1fZQoaAZHQJ2jhz1bqyJoB03oA2gIR0CwzWUbtJFtdX2UKGgGR0CeNwwQDmr9aAdN6ANoCEdAsM2whdMTOHV9lChoBkdAjiZpoTPBzmgHTegDaAhHQLDRZ6Ww/xF1fZQoaAZHQJwTfhXKbKBoB03oA2gIR0Cw0z1r/KhddX2UKGgGR0CTRMdNFjNIaAdN6ANoCEdAsNV2Hj6vaHV9lChoBkdAnMI9Vmz0H2gHTegDaAhHQLDVp150KZ51fZQoaAZHQIamMNe+mFdoB03oA2gIR0Cw2aRs/IKddX2UKGgGR0CBAFUVi4KAaAdN6ANoCEdAsNyTt8eCCnV9lChoBkdAnt0wbADaG2gHTegDaAhHQLDewbCrLhd1fZQoaAZHQIpxbPSlWOpoB03oA2gIR0Cw3vOuaF23dX2UKGgGR0Bmmbifg75maAdLzWgIR0Cw4F71/Ue/dX2UKGgGR0CKVq3Ov+wUaAdN6ANoCEdAsOKMPMB6r3V9lChoBkdAlwV7TDwYtWgHTegDaAhHQLDkdDIBBAx1fZQoaAZHQJkH1ajesPtoB03oA2gIR0Cw5wK4H5aedX2UKGgGR0Cayf/+sHSnaAdN6ANoCEdAsOkN+9allHV9lChoBkdAj7p+lj3Eh2gHTegDaAhHQLDrw0bcXWR1fZQoaAZHQI6+RaiblRxoB03oA2gIR0Cw7ZkUXYUWdX2UKGgGR0COSwLXL/0eaAdN6ANoCEdAsO/7P3SKFnV9lChoBkdAjfBxQaaTfWgHTegDaAhHQLDxZZWq95B1fZQoaAZHQI+7zdxhlUZoB03oA2gIR0Cw84gSBbwCdX2UKGgGR0CR5ZiYsunNaAdN6ANoCEdAsPXFDx9XtHV9lChoBkdAgwcC+L3sX2gHTegDaAhHQLD5MHaews51fZQoaAZHQI+NVW4mTkhoB03oA2gIR0Cw+qfP1L8KdX2UKGgGR0CFufOqNp/PaAdN6ANoCEdAsPzgW69TP3V9lChoBkdAgspR+KCQLmgHTegDaAhHQLD+2zSkTHt1fZQoaAZHQJAjJ2r4nF5oB03oA2gIR0CxASyd4FA3dX2UKGgGR0COX3THbRF7aAdN6ANoCEdAsQKYJjUd73V9lChoBkdAlp8G7SRbKWgHTegDaAhHQLEFoGUOd5J1fZQoaAZHQHCG2/SH/LloB02ZAmgIR0CxB8UDyOJddX2UKGgGR0CRk63mV7hOaAdN6ANoCEdAsQgGpo9LYnV9lChoBkdAljxeFtbcGmgHTegDaAhHQLELxvicXnB1fZQoaAZHQI59UaVD8cdoB03oA2gIR0CxDe8Zk079dX2UKGgGR0CPu06fapPzaAdN6ANoCEdAsQ+VIWgvlHV9lChoBkdAkqX5Ys/Y8WgHTegDaAhHQLEP1qCHymR1fZQoaAZHQIe8oTIvJzVoB03oA2gIR0CxFQlLnLaFdX2UKGgGR0CJ8j6po9LYaAdN6ANoCEdAsRdd7sv7FnV9lChoBkdAh3S51Ng0CWgHTegDaAhHQLEZCqt5le51ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}