File size: 10,486 Bytes
d7cca62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: hubert-large-korean-finetuned-korspeech-ser2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-large-korean-finetuned-korspeech-ser2

This model is a fine-tuned version of [team-lucid/hubert-large-korean](https://huggingface.co/team-lucid/hubert-large-korean) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4456
- Macro F1: 0.6275
- Accuracy: 0.6278
- Weighted f1: 0.6275
- Micro f1: 0.6278
- Weighted recall: 0.6278
- Micro recall: 0.6278
- Macro recall: 0.6278
- Weighted precision: 0.6296
- Micro precision: 0.6278
- Macro precision: 0.6296

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Weighted f1 | Micro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 1.3419        | 0.28  | 100  | 1.2665          | 0.4034   | 0.4276   | 0.4034      | 0.4276   | 0.4276          | 0.4276       | 0.4276       | 0.4520             | 0.4276          | 0.4520          |
| 1.2338        | 0.57  | 200  | 1.1790          | 0.4459   | 0.4638   | 0.4459      | 0.4638   | 0.4638          | 0.4638       | 0.4638       | 0.4618             | 0.4638          | 0.4618          |
| 1.1842        | 0.85  | 300  | 1.1540          | 0.4560   | 0.4972   | 0.4560      | 0.4972   | 0.4972          | 0.4972       | 0.4972       | 0.4966             | 0.4972          | 0.4966          |
| 1.1304        | 1.13  | 400  | 1.1268          | 0.5056   | 0.5249   | 0.5056      | 0.5249   | 0.5249          | 0.5249       | 0.5249       | 0.5269             | 0.5249          | 0.5269          |
| 1.0815        | 1.42  | 500  | 1.0745          | 0.5390   | 0.5447   | 0.5390      | 0.5447   | 0.5447          | 0.5447       | 0.5447       | 0.5396             | 0.5447          | 0.5396          |
| 1.0822        | 1.7   | 600  | 1.0715          | 0.5071   | 0.5270   | 0.5071      | 0.5270   | 0.5270          | 0.5270       | 0.5270       | 0.5260             | 0.5270          | 0.5260          |
| 1.0484        | 1.99  | 700  | 1.0213          | 0.5555   | 0.5632   | 0.5555      | 0.5632   | 0.5632          | 0.5632       | 0.5632       | 0.5573             | 0.5632          | 0.5573          |
| 0.9784        | 2.27  | 800  | 1.0601          | 0.5640   | 0.5739   | 0.5640      | 0.5739   | 0.5739          | 0.5739       | 0.5739       | 0.5715             | 0.5739          | 0.5715          |
| 0.9627        | 2.55  | 900  | 1.0287          | 0.5606   | 0.5746   | 0.5606      | 0.5746   | 0.5746          | 0.5746       | 0.5746       | 0.5714             | 0.5746          | 0.5714          |
| 0.9614        | 2.84  | 1000 | 0.9945          | 0.5705   | 0.5753   | 0.5705      | 0.5753   | 0.5753          | 0.5753       | 0.5753       | 0.5782             | 0.5753          | 0.5782          |
| 0.9379        | 3.12  | 1100 | 1.0166          | 0.5852   | 0.5881   | 0.5852      | 0.5881   | 0.5881          | 0.5881       | 0.5881       | 0.5899             | 0.5881          | 0.5899          |
| 0.8982        | 3.4   | 1200 | 1.0289          | 0.5685   | 0.5724   | 0.5685      | 0.5724   | 0.5724          | 0.5724       | 0.5724       | 0.5905             | 0.5724          | 0.5905          |
| 0.8651        | 3.69  | 1300 | 1.0100          | 0.5967   | 0.6001   | 0.5967      | 0.6001   | 0.6001          | 0.6001       | 0.6001       | 0.6005             | 0.6001          | 0.6005          |
| 0.9017        | 3.97  | 1400 | 1.0405          | 0.5702   | 0.5739   | 0.5702      | 0.5739   | 0.5739          | 0.5739       | 0.5739       | 0.5884             | 0.5739          | 0.5884          |
| 0.8152        | 4.26  | 1500 | 0.9874          | 0.6016   | 0.6030   | 0.6016      | 0.6030   | 0.6030          | 0.6030       | 0.6030       | 0.6090             | 0.6030          | 0.6090          |
| 0.8149        | 4.54  | 1600 | 0.9994          | 0.6001   | 0.6044   | 0.6001      | 0.6044   | 0.6044          | 0.6044       | 0.6044       | 0.6092             | 0.6044          | 0.6092          |
| 0.7978        | 4.82  | 1700 | 1.0319          | 0.5945   | 0.6080   | 0.5945      | 0.6080   | 0.6080          | 0.6080       | 0.6080       | 0.6093             | 0.6080          | 0.6093          |
| 0.7674        | 5.11  | 1800 | 1.0800          | 0.5884   | 0.5909   | 0.5884      | 0.5909   | 0.5909          | 0.5909       | 0.5909       | 0.6128             | 0.5909          | 0.6128          |
| 0.7126        | 5.39  | 1900 | 1.0071          | 0.6177   | 0.6200   | 0.6177      | 0.6200   | 0.6200          | 0.6200       | 0.6200       | 0.6229             | 0.6200          | 0.6229          |
| 0.7229        | 5.67  | 2000 | 1.0267          | 0.6141   | 0.6165   | 0.6141      | 0.6165   | 0.6165          | 0.6165       | 0.6165       | 0.6141             | 0.6165          | 0.6141          |
| 0.7272        | 5.96  | 2100 | 1.0179          | 0.6119   | 0.6143   | 0.6119      | 0.6143   | 0.6143          | 0.6143       | 0.6143       | 0.6147             | 0.6143          | 0.6147          |
| 0.6519        | 6.24  | 2200 | 1.0576          | 0.6246   | 0.6257   | 0.6246      | 0.6257   | 0.6257          | 0.6257       | 0.6257       | 0.6322             | 0.6257          | 0.6322          |
| 0.6287        | 6.52  | 2300 | 1.0537          | 0.6275   | 0.6307   | 0.6275      | 0.6307   | 0.6307          | 0.6307       | 0.6307       | 0.6382             | 0.6307          | 0.6382          |
| 0.6103        | 6.81  | 2400 | 1.0323          | 0.6305   | 0.6328   | 0.6305      | 0.6328   | 0.6328          | 0.6328       | 0.6328       | 0.6329             | 0.6328          | 0.6329          |
| 0.5639        | 7.09  | 2500 | 1.1021          | 0.6306   | 0.6335   | 0.6306      | 0.6335   | 0.6335          | 0.6335       | 0.6335       | 0.6336             | 0.6335          | 0.6336          |
| 0.5706        | 7.38  | 2600 | 1.1086          | 0.6328   | 0.6342   | 0.6328      | 0.6342   | 0.6342          | 0.6342       | 0.6342       | 0.6349             | 0.6342          | 0.6349          |
| 0.529         | 7.66  | 2700 | 1.1428          | 0.6194   | 0.6186   | 0.6194      | 0.6186   | 0.6186          | 0.6186       | 0.6186       | 0.6260             | 0.6186          | 0.6260          |
| 0.5336        | 7.94  | 2800 | 1.1523          | 0.6128   | 0.6136   | 0.6128      | 0.6136   | 0.6136          | 0.6136       | 0.6136       | 0.6131             | 0.6136          | 0.6131          |
| 0.4776        | 8.23  | 2900 | 1.3509          | 0.5922   | 0.5959   | 0.5922      | 0.5959   | 0.5959          | 0.5959       | 0.5959       | 0.6070             | 0.5959          | 0.6070          |
| 0.4603        | 8.51  | 3000 | 1.2143          | 0.6036   | 0.6023   | 0.6036      | 0.6023   | 0.6023          | 0.6023       | 0.6023       | 0.6058             | 0.6023          | 0.6058          |
| 0.4734        | 8.79  | 3100 | 1.2464          | 0.6056   | 0.6051   | 0.6056      | 0.6051   | 0.6051          | 0.6051       | 0.6051       | 0.6063             | 0.6051          | 0.6063          |
| 0.4358        | 9.08  | 3200 | 1.3027          | 0.6110   | 0.6108   | 0.6110      | 0.6108   | 0.6108          | 0.6108       | 0.6108       | 0.6178             | 0.6108          | 0.6178          |
| 0.3808        | 9.36  | 3300 | 1.3469          | 0.6265   | 0.6328   | 0.6265      | 0.6328   | 0.6328          | 0.6328       | 0.6328       | 0.6304             | 0.6328          | 0.6304          |
| 0.4184        | 9.65  | 3400 | 1.3317          | 0.6168   | 0.6165   | 0.6168      | 0.6165   | 0.6165          | 0.6165       | 0.6165       | 0.6220             | 0.6165          | 0.6220          |
| 0.3748        | 9.93  | 3500 | 1.3316          | 0.6232   | 0.625    | 0.6232      | 0.625    | 0.625           | 0.625        | 0.625        | 0.6344             | 0.625           | 0.6344          |
| 0.3785        | 10.21 | 3600 | 1.3792          | 0.6144   | 0.6158   | 0.6144      | 0.6158   | 0.6158          | 0.6158       | 0.6158       | 0.6172             | 0.6158          | 0.6172          |
| 0.3339        | 10.5  | 3700 | 1.4025          | 0.6263   | 0.6264   | 0.6263      | 0.6264   | 0.6264          | 0.6264       | 0.6264       | 0.6296             | 0.6264          | 0.6296          |
| 0.367         | 10.78 | 3800 | 1.3871          | 0.6108   | 0.6115   | 0.6108      | 0.6115   | 0.6115          | 0.6115       | 0.6115       | 0.6135             | 0.6115          | 0.6135          |
| 0.3307        | 11.06 | 3900 | 1.3996          | 0.6170   | 0.6179   | 0.6170      | 0.6179   | 0.6179          | 0.6179       | 0.6179       | 0.6181             | 0.6179          | 0.6181          |
| 0.3188        | 11.35 | 4000 | 1.4383          | 0.6251   | 0.6271   | 0.6251      | 0.6271   | 0.6271          | 0.6271       | 0.6271       | 0.6252             | 0.6271          | 0.6252          |
| 0.3129        | 11.63 | 4100 | 1.4338          | 0.6209   | 0.6214   | 0.6209      | 0.6214   | 0.6214          | 0.6214       | 0.6214       | 0.6217             | 0.6214          | 0.6217          |
| 0.3112        | 11.91 | 4200 | 1.4456          | 0.6275   | 0.6278   | 0.6275      | 0.6278   | 0.6278          | 0.6278       | 0.6278       | 0.6296             | 0.6278          | 0.6296          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3