--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/ClimBEiT-t2 tags: - knowledge_distillation - vision - generated_from_trainer metrics: - accuracy model-index: - name: beit-base-finetuned-ade-640-640_alpha0.5_temp3.0_t2 results: [] --- # beit-base-finetuned-ade-640-640_alpha0.5_temp3.0_t2 This model is a fine-tuned version of [c14kevincardenas/ClimBEiT-t2](https://huggingface.co/c14kevincardenas/ClimBEiT-t2) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb dataset. It achieves the following results on the evaluation set: - Loss: 0.4847 - Accuracy: 0.8379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2201 | 1.0 | 180 | 1.3453 | 0.3804 | | 0.7455 | 2.0 | 360 | 0.8167 | 0.6897 | | 0.5498 | 3.0 | 540 | 0.6835 | 0.7609 | | 0.4331 | 4.0 | 720 | 0.6307 | 0.7737 | | 0.3415 | 5.0 | 900 | 0.5956 | 0.7915 | | 0.2533 | 6.0 | 1080 | 0.5516 | 0.8113 | | 0.2366 | 7.0 | 1260 | 0.5602 | 0.8073 | | 0.2326 | 8.0 | 1440 | 0.6457 | 0.7866 | | 0.2331 | 9.0 | 1620 | 0.5528 | 0.8024 | | 0.2284 | 10.0 | 1800 | 0.5510 | 0.8083 | | 0.1929 | 11.0 | 1980 | 0.5410 | 0.8152 | | 0.1819 | 12.0 | 2160 | 0.5152 | 0.8251 | | 0.1677 | 13.0 | 2340 | 0.5095 | 0.8192 | | 0.1647 | 14.0 | 2520 | 0.4979 | 0.8310 | | 0.1669 | 15.0 | 2700 | 0.5143 | 0.8370 | | 0.1511 | 16.0 | 2880 | 0.4890 | 0.8449 | | 0.1523 | 17.0 | 3060 | 0.4996 | 0.8360 | | 0.1562 | 18.0 | 3240 | 0.4913 | 0.8350 | | 0.1474 | 19.0 | 3420 | 0.4876 | 0.8379 | | 0.1422 | 20.0 | 3600 | 0.4847 | 0.8379 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1