--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/ClimBEiT-t2 tags: - knowledge_distillation - vision - generated_from_trainer metrics: - accuracy model-index: - name: beit-base-finetuned-ade-640-640_alpha0.5_temp5.0_t2 results: [] --- # beit-base-finetuned-ade-640-640_alpha0.5_temp5.0_t2 This model is a fine-tuned version of [c14kevincardenas/ClimBEiT-t2](https://huggingface.co/c14kevincardenas/ClimBEiT-t2) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb dataset. It achieves the following results on the evaluation set: - Loss: 0.4849 - Accuracy: 0.8389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1929 | 1.0 | 180 | 1.3065 | 0.3972 | | 0.7186 | 2.0 | 360 | 0.8221 | 0.6917 | | 0.5468 | 3.0 | 540 | 0.7486 | 0.7223 | | 0.4245 | 4.0 | 720 | 0.6552 | 0.7688 | | 0.3503 | 5.0 | 900 | 0.5798 | 0.7945 | | 0.2533 | 6.0 | 1080 | 0.6044 | 0.7875 | | 0.2419 | 7.0 | 1260 | 0.5754 | 0.8014 | | 0.238 | 8.0 | 1440 | 0.6908 | 0.7727 | | 0.2325 | 9.0 | 1620 | 0.5579 | 0.8063 | | 0.2118 | 10.0 | 1800 | 0.5279 | 0.8261 | | 0.1827 | 11.0 | 1980 | 0.5354 | 0.8182 | | 0.1797 | 12.0 | 2160 | 0.5396 | 0.8310 | | 0.1628 | 13.0 | 2340 | 0.5208 | 0.8350 | | 0.1628 | 14.0 | 2520 | 0.5148 | 0.8182 | | 0.1613 | 15.0 | 2700 | 0.5173 | 0.8162 | | 0.151 | 16.0 | 2880 | 0.4949 | 0.8320 | | 0.1492 | 17.0 | 3060 | 0.5020 | 0.8281 | | 0.1538 | 18.0 | 3240 | 0.4889 | 0.8281 | | 0.1434 | 19.0 | 3420 | 0.4910 | 0.8350 | | 0.1391 | 20.0 | 3600 | 0.4849 | 0.8389 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1