--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/beit-large-patch16-384-limb-person-crop tags: - image-sequence-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-beit-limb-seq-t2-4heads-1layers-5e-4lr results: [] --- # finetuned-beit-limb-seq-t2-4heads-1layers-5e-4lr This model is a fine-tuned version of [c14kevincardenas/beit-large-patch16-384-limb-person-crop](https://huggingface.co/c14kevincardenas/beit-large-patch16-384-limb-person-crop) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb_2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3965 - Accuracy: 0.9180 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2014 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 15.0 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.05 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5406 | 1.0 | 180 | 0.4804 | 0.8883 | | 0.4852 | 2.0 | 360 | 0.5457 | 0.8794 | | 0.4664 | 3.0 | 540 | 0.4203 | 0.9051 | | 0.4929 | 4.0 | 720 | 0.4349 | 0.9002 | | 0.4334 | 5.0 | 900 | 0.4816 | 0.8765 | | 0.4709 | 6.0 | 1080 | 0.4574 | 0.8933 | | 0.4525 | 7.0 | 1260 | 0.4652 | 0.8883 | | 0.4601 | 8.0 | 1440 | 0.4387 | 0.9002 | | 0.4361 | 9.0 | 1620 | 0.4138 | 0.9071 | | 0.4297 | 10.0 | 1800 | 0.4089 | 0.9140 | | 0.4 | 11.0 | 1980 | 0.4000 | 0.9200 | | 0.4035 | 12.0 | 2160 | 0.4260 | 0.9071 | | 0.3875 | 13.0 | 2340 | 0.4088 | 0.9101 | | 0.4117 | 14.0 | 2520 | 0.3965 | 0.9180 | | 0.3518 | 15.0 | 2700 | 0.3987 | 0.9160 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1