File size: 2,944 Bytes
c5aa5f3
 
 
 
 
4dc4ea5
 
c5aa5f3
 
 
 
 
 
 
 
 
 
 
 
 
4dc4ea5
c5aa5f3
4dc4ea5
 
c5aa5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
library_name: transformers
license: apache-2.0
base_model: c14kevincardenas/beit-large-patch16-384-limb-person-crop
tags:
- image-sequence-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned-beit-limb-seq-t4-2heads-2layers-1e-4lr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-beit-limb-seq-t4-2heads-2layers-1e-4lr

This model is a fine-tuned version of [c14kevincardenas/beit-large-patch16-384-limb-person-crop](https://huggingface.co/c14kevincardenas/beit-large-patch16-384-limb-person-crop) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb_4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3905
- Accuracy: 0.9198

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2014
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 20.0
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.05

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.728         | 1.0   | 148  | 0.4692          | 0.8934   |
| 0.4398        | 2.0   | 296  | 0.4154          | 0.9174   |
| 0.4817        | 3.0   | 444  | 0.4183          | 0.9114   |
| 0.4336        | 4.0   | 592  | 0.4365          | 0.9006   |
| 0.4266        | 5.0   | 740  | 0.4001          | 0.9186   |
| 0.4375        | 6.0   | 888  | 0.4102          | 0.9090   |
| 0.3893        | 7.0   | 1036 | 0.4297          | 0.9078   |
| 0.4142        | 8.0   | 1184 | 0.3987          | 0.9222   |
| 0.4409        | 9.0   | 1332 | 0.3905          | 0.9198   |
| 0.3839        | 10.0  | 1480 | 0.3984          | 0.9126   |
| 0.3798        | 11.0  | 1628 | 0.4075          | 0.9138   |
| 0.4059        | 12.0  | 1776 | 0.3997          | 0.9114   |
| 0.3785        | 13.0  | 1924 | 0.4169          | 0.9114   |
| 0.3823        | 14.0  | 2072 | 0.4268          | 0.9102   |
| 0.3601        | 15.0  | 2220 | 0.4115          | 0.9150   |
| 0.3725        | 16.0  | 2368 | 0.3957          | 0.9246   |
| 0.3321        | 17.0  | 2516 | 0.4084          | 0.9138   |
| 0.3718        | 18.0  | 2664 | 0.4134          | 0.9102   |
| 0.3605        | 19.0  | 2812 | 0.4041          | 0.9150   |
| 0.3167        | 20.0  | 2960 | 0.4074          | 0.9186   |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1