--- library_name: transformers license: apache-2.0 base_model: c14kevincardenas/beit-large-patch16-384-limb-person-crop tags: - image-sequence-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-beit-limb-seq-t4-2heads-2layers-1e-4lr results: [] --- # finetuned-beit-limb-seq-t4-2heads-2layers-1e-4lr This model is a fine-tuned version of [c14kevincardenas/beit-large-patch16-384-limb-person-crop](https://huggingface.co/c14kevincardenas/beit-large-patch16-384-limb-person-crop) on the c14kevincardenas/beta_caller_284_person_crop_seq_withlimb_4 dataset. It achieves the following results on the evaluation set: - Loss: 0.3905 - Accuracy: 0.9198 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 2014 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 20.0 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.05 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.728 | 1.0 | 148 | 0.4692 | 0.8934 | | 0.4398 | 2.0 | 296 | 0.4154 | 0.9174 | | 0.4817 | 3.0 | 444 | 0.4183 | 0.9114 | | 0.4336 | 4.0 | 592 | 0.4365 | 0.9006 | | 0.4266 | 5.0 | 740 | 0.4001 | 0.9186 | | 0.4375 | 6.0 | 888 | 0.4102 | 0.9090 | | 0.3893 | 7.0 | 1036 | 0.4297 | 0.9078 | | 0.4142 | 8.0 | 1184 | 0.3987 | 0.9222 | | 0.4409 | 9.0 | 1332 | 0.3905 | 0.9198 | | 0.3839 | 10.0 | 1480 | 0.3984 | 0.9126 | | 0.3798 | 11.0 | 1628 | 0.4075 | 0.9138 | | 0.4059 | 12.0 | 1776 | 0.3997 | 0.9114 | | 0.3785 | 13.0 | 1924 | 0.4169 | 0.9114 | | 0.3823 | 14.0 | 2072 | 0.4268 | 0.9102 | | 0.3601 | 15.0 | 2220 | 0.4115 | 0.9150 | | 0.3725 | 16.0 | 2368 | 0.3957 | 0.9246 | | 0.3321 | 17.0 | 2516 | 0.4084 | 0.9138 | | 0.3718 | 18.0 | 2664 | 0.4134 | 0.9102 | | 0.3605 | 19.0 | 2812 | 0.4041 | 0.9150 | | 0.3167 | 20.0 | 2960 | 0.4074 | 0.9186 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1