Ma787639046 commited on
Commit
96f426a
·
1 Parent(s): 94b625c
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - transformers
7
+ ---
8
+
9
+ # CoT-MAE MS-Marco Passage Retriever
10
+
11
+ CoT-MAE is a transformers based Mask Auto-Encoder pretraining architecture designed for Dense Passage Retrieval.
12
+ **CoT-MAE MS-Marco Passage Retriever** is a retriever trained with BM25 hard negatives and CoT-MAE retriever mined MS-Marco hard negatives using [Tevatron](github.com/texttron/tevatron) toolkit. Specifically, we trained a stage-one retriever using BM25 HN, using stage-one retriever to mine HN, then trained a stage-two retriever using both BM25 HN & stage-one retriever mined hn. The release is the stage-two retriever.
13
+
14
+ Details can be found in our paper and codes.
15
+
16
+ Paper: [ConTextual Mask Auto-Encoder for Dense Passage Retrieval](https://arxiv.org/abs/2208.07670).
17
+
18
+ Code: [caskcsg/ir/cotmae](https://github.com/caskcsg/ir/tree/main/cotmae)
19
+
20
+ ## Scores
21
+ ### MS-Marco Passage full-ranking
22
+
23
+ | MRR @10 | recall@1 | recall@50 | recall@1k | QueriesRanked |
24
+ |----------|----------|-----------|-----------|----------------|
25
+ | 0.394431 | 0.265903 | 0.870344 | 0.986676 | 6980 |
26
+
27
+ ## Citations
28
+ If you find our work useful, please cite our paper.
29
+ ```bibtex
30
+ @misc{https://doi.org/10.48550/arxiv.2208.07670,
31
+ doi = {10.48550/ARXIV.2208.07670},
32
+ url = {https://arxiv.org/abs/2208.07670},
33
+ author = {Wu, Xing and Ma, Guangyuan and Lin, Meng and Lin, Zijia and Wang, Zhongyuan and Hu, Songlin},
34
+ keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
35
+ title = {ConTextual Mask Auto-Encoder for Dense Passage Retrieval},
36
+ publisher = {arXiv},
37
+ year = {2022},
38
+ copyright = {arXiv.org perpetual, non-exclusive license}
39
+ }
40
+ ```
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.17.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e81d1397062c46511ecda95b4ed26f3a71ce764d1eec5acd68a53b819fb9d6d
3
+ size 438016375
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff