--- pipeline_tag: sentence-similarity tags: - feature-extraction - sentence-similarity - transformers --- # CoT-MAE MS-Marco Passage Retriever CoT-MAE is a transformers based Mask Auto-Encoder pretraining architecture designed for Dense Passage Retrieval. **CoT-MAE MS-Marco Passage Retriever** is a retriever trained with BM25 hard negatives and CoT-MAE retriever mined MS-Marco hard negatives using [Tevatron](github.com/texttron/tevatron) toolkit. Specifically, we trained a stage-one retriever using BM25 HN, using stage-one retriever to mine HN, then trained a stage-two retriever using both BM25 HN & stage-one retriever mined hn. The release is the stage-two retriever. Details can be found in our paper and codes. Paper: [ConTextual Mask Auto-Encoder for Dense Passage Retrieval](https://arxiv.org/abs/2208.07670). Code: [caskcsg/ir/cotmae](https://github.com/caskcsg/ir/tree/main/cotmae) ## Scores ### MS-Marco Passage full-ranking | MRR @10 | recall@1 | recall@50 | recall@1k | QueriesRanked | |----------|----------|-----------|-----------|----------------| | 0.394431 | 0.265903 | 0.870344 | 0.986676 | 6980 | ## Citations If you find our work useful, please cite our paper. ```bibtex @misc{https://doi.org/10.48550/arxiv.2208.07670, doi = {10.48550/ARXIV.2208.07670}, url = {https://arxiv.org/abs/2208.07670}, author = {Wu, Xing and Ma, Guangyuan and Lin, Meng and Lin, Zijia and Wang, Zhongyuan and Hu, Songlin}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {ConTextual Mask Auto-Encoder for Dense Passage Retrieval}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```