--- license: mit datasets: - chaitjo/QM9_ADiT - chaitjo/MP20_ADiT - chaitjo/QMOF150_ADiT tags: - chemistry - materials - molecules - crystals - diffusion - transformer - latent-diffusion - all-atom model-index: - name: ADiT results: - task: type: unconditional-molecule-generation dataset: name: QM9 type: QM9 metrics: - name: Validity Rate type: Validity Rate value: 94.45 source: name: Unconditional Molecule Generation url: https://paperswithcode.com/sota/unconditional-molecule-generation-on-qm9 - task: type: unconditional-crystal-generation dataset: name: MP20 type: MP20 metrics: - name: Validity Rate type: Validity Rate value: 91.92 - name: DFT S.U.N. Rate type: DFT S.U.N. Rate value: 6 source: name: Unconditional Crystal Generation url: https://paperswithcode.com/sota/unconditional-crystal-generation-on-mp20 library_name: transformers --- # All-atom Diffusion Transformers [![arXiv](https://img.shields.io/badge/PDF-arXiv-blue)](https://www.arxiv.org/abs/2503.03965) [![Code](https://img.shields.io/badge/Code-GitHub-red)](https://github.com/facebookresearch/all-atom-diffusion-transformer/) [![Weights](https://img.shields.io/badge/Weights-HuggingFace-yellow)](https://huggingface.co/chaitjo/all-atom-diffusion-transformer) [![X](https://img.shields.io/badge/X_thread-@chaitjo-blue)](https://x.com/chaitjo/status/1899114667219304525) [![YouTube](https://img.shields.io/badge/Talk-YouTube-red)](https://www.youtube.com/watch?v=NiY4NLzemnU) [![Slides](https://img.shields.io/badge/Slides-chaitjo.com-green)](https://www.chaitjo.com/publication/joshi-2025-allatom/All_Atom_Diffusion_Transformers_Slides.pdf) Open In Colab Independent reproduction of the paper [*"All-atom Diffusion Transformers: Unified generative modelling of molecules and materials"*](https://www.arxiv.org/abs/2503.03965), by [Chaitanya K. Joshi](https://www.chaitjo.com/), [Xiang Fu](https://xiangfu.co/), [Yi-Lun Liao](https://www.linkedin.com/in/yilunliao), [Vahe Gharakhanyan](https://gvahe.github.io/), [Benjamin Kurt Miller](https://www.mathben.com/), [Anuroop Sriram*](https://anuroopsriram.com/), and [Zachary W. Ulissi*](https://zulissi.github.io/) from FAIR Chemistry at Meta, published at ICML 2025 (* Joint last author). All-atom Diffusion Transformers (ADiTs) jointly generate both periodic materials and non-periodic molecular systems using a unified latent diffusion framework: - An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and - A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. ![](https://raw.githubusercontent.com/facebookresearch/all-atom-diffusion-transformer/refs/heads/main/ADiT.png) Note that these checkpoints are the result of an independent reproduction of this research by Chaitanya K. Joshi, and may not correspond to the exact models/performance metrics reported in the final manuscript. These checkpoints can be used to run inference as described in the [README on GitHub](https://github.com/facebookresearch/all-atom-diffusion-transformer/). Here is a minimal notebook for loading an ADiT checkpoint and sampling some crystals or molecules: Open In Colab Examples of 10,000 sampled crystals and molecules are also available: - [Crystals as CIF files](https://huggingface.co/chaitjo/all-atom-diffusion-transformer/resolve/main/ADiT_crystals_mp20.zip) - [Molecules as PDB files](https://huggingface.co/chaitjo/all-atom-diffusion-transformer/resolve/main/ADiT_molecules_qm9.zip) ## Citation Accepted as a conference paper at ICML 2025. Also presented as a [Spotlight talk](https://www.youtube.com/watch?v=NiY4NLzemnU) at ICLR 2025 AI for Accelerated Materials Design Workshop. ArXiv link: [*All-atom Diffusion Transformers: Unified generative modelling of molecules and materials*](https://www.arxiv.org/abs/2503.03965) ``` @inproceedings{joshi2025allatom, title={All-atom Diffusion Transformers: Unified generative modelling of molecules and materials}, author={Chaitanya K. Joshi and Xiang Fu and Yi-Lun Liao and Vahe Gharakhanyan and Benjamin Kurt Miller and Anuroop Sriram and Zachary W. Ulissi}, booktitle={International Conference on Machine Learning}, year={2025}, } ```