File size: 24,143 Bytes
f36f848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15002
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: what kind of oil and how much do i need for my toyota tacoma truck
and how do i do it
sentences:
- Requests to change the system or application's language settings. Users may ask
to switch to a specific language, such as English, or adjust the language preferences
to enhance usability.
- Requests for step-by-step instructions or guidance on how to change the oil in
a car. Users seek detailed procedures, tools needed, and tips for performing this
maintenance task.
- Requests to make a reservation at a specific restaurant for a specified number
of people, time, and under a provided name. Users expect confirmation of the booking
details.
- source_sentence: please double check my reservations for six at mani
sentences:
- Requests to verify or confirm existing reservations, typically for dining or events.
Users provide details about the reservation and ask for confirmation that it is
correctly recorded.
- Requests for details about an insurance policy, including coverage, benefits,
and exclusions. Users may inquire about specific aspects like health benefits
or policy terms.
- Requests to create, manage, or customize timers for various tasks or activities.
Users can define the duration, purpose, or type of the timer and receive notifications
or alerts when the timer reaches its set time.
- source_sentence: what are some good ethiopian restaurants in queens
sentences:
- Requests for the meaning or definition of words. Users may inquire about the definitions
of uncommon, complex, or unfamiliar terms, aiming to gain a clear understanding
or contextual usage of the word in question.
- Requests to assist with paying bills, such as utilities, credit cards, or other
services. Users may specify the bill type, amount, and source account for the
payment.
- Requests for recommendations or suggestions for dining options. Users may ask
for specific cuisine types, locations, or general ideas on where to eat.
- source_sentence: are there any expected delays for flight dl123
sentences:
- Requests for travel time or distance to a specific location. Users typically seek
estimates based on current traffic, routes, or modes of transportation to determine
the time needed to reach their destination.
- Requests for information about flight details, such as boarding times, delays,
or schedules. Users typically inquire to ensure they are updated about their flight's
status.
- Requests for advice or strategies to improve credit scores. Users may seek a detailed
plan, tips, or insights into financial habits that can lead to a better credit
rating.
- source_sentence: how do i ask about the weather in chinese
sentences:
- Requests related to translating words, phrases, or sentences from one language
to another. The user may specify the source and target languages, and the goal
is to provide an accurate and context-appropriate translation.
- Requests for information about a vehicle's miles per gallon (MPG) rating, either
in specific conditions like city driving or as an overall performance metric.
Users may seek guidance on fuel efficiency for their car.
- Requests for information about a vehicle's miles per gallon (MPG) rating, either
in specific conditions like city driving or as an overall performance metric.
Users may seek guidance on fuel efficiency for their car.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9706666666666667
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9886666666666667
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.992
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9956666666666667
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9706666666666667
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3295555555555556
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19840000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09956666666666668
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9706666666666667
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9886666666666667
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.992
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9956666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9841961906084298
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9804173280423282
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9806052445247627
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-large-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chinchilla04/bge-finetuned-train")
# Run inference
sentences = [
'how do i ask about the weather in chinese',
'Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.',
"Requests for information about a vehicle's miles per gallon (MPG) rating, either in specific conditions like city driving or as an overall performance metric. Users may seek guidance on fuel efficiency for their car.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9707 |
| cosine_accuracy@3 | 0.9887 |
| cosine_accuracy@5 | 0.992 |
| cosine_accuracy@10 | 0.9957 |
| cosine_precision@1 | 0.9707 |
| cosine_precision@3 | 0.3296 |
| cosine_precision@5 | 0.1984 |
| cosine_precision@10 | 0.0996 |
| cosine_recall@1 | 0.9707 |
| cosine_recall@3 | 0.9887 |
| cosine_recall@5 | 0.992 |
| cosine_recall@10 | 0.9957 |
| **cosine_ndcg@10** | **0.9842** |
| cosine_mrr@10 | 0.9804 |
| cosine_map@100 | 0.9806 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 15,002 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 10.66 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 42.6 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 41.95 tokens</li><li>max: 58 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what expression would i use to say i love you if i were an italian</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> | <code>Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.</code> |
| <code>can you tell me how to say 'i do not speak much spanish', in spanish</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> | <code>Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.</code> |
| <code>what is the equivalent of, 'life is good' in french</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> | <code>Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 3,000 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 11.06 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 36.16 tokens</li><li>max: 58 tokens</li></ul> |
* Samples:
| anchor | positive |
|:------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>in spanish, meet me tomorrow is said how</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> |
| <code>in french, how do i say, see you later</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> |
| <code>how do you say hello in japanese</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `learning_rate`: 1e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:--------------:|
| None | 0 | - | 0.2730 | 0.9055 |
| 0.3198 | 150 | - | 0.0698 | 0.9633 |
| 0.6397 | 300 | - | 0.0642 | 0.9683 |
| 0.9595 | 450 | - | 0.0603 | 0.9763 |
| 1.0661 | 500 | 1.0338 | - | - |
| 1.2793 | 600 | - | 0.0612 | 0.9762 |
| 1.5991 | 750 | - | 0.0602 | 0.9802 |
| 1.9190 | 900 | - | 0.0571 | 0.9820 |
| 2.1322 | 1000 | 0.787 | - | - |
| 2.2388 | 1050 | - | 0.0585 | 0.9819 |
| **2.5586** | **1200** | **-** | **0.0565** | **0.9842** |
| 2.8785 | 1350 | - | 0.0578 | 0.9837 |
| 3.1983 | 1500 | 0.6768 | 0.0570 | 0.9844 |
| 3.5181 | 1650 | - | 0.0587 | 0.9837 |
| 3.8380 | 1800 | - | 0.0584 | 0.9837 |
| None | 0 | - | 0.0565 | 0.9842 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |