File size: 24,143 Bytes
f36f848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15002
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en-v1.5
widget:
- source_sentence: what kind of oil and how much do i need for my toyota tacoma truck
    and how do i do it
  sentences:
  - Requests to change the system or application's language settings. Users may ask
    to switch to a specific language, such as English, or adjust the language preferences
    to enhance usability.
  - Requests for step-by-step instructions or guidance on how to change the oil in
    a car. Users seek detailed procedures, tools needed, and tips for performing this
    maintenance task.
  - Requests to make a reservation at a specific restaurant for a specified number
    of people, time, and under a provided name. Users expect confirmation of the booking
    details.
- source_sentence: please double check my reservations for six at mani
  sentences:
  - Requests to verify or confirm existing reservations, typically for dining or events.
    Users provide details about the reservation and ask for confirmation that it is
    correctly recorded.
  - Requests for details about an insurance policy, including coverage, benefits,
    and exclusions. Users may inquire about specific aspects like health benefits
    or policy terms.
  - Requests to create, manage, or customize timers for various tasks or activities.
    Users can define the duration, purpose, or type of the timer and receive notifications
    or alerts when the timer reaches its set time.
- source_sentence: what are some good ethiopian restaurants in queens
  sentences:
  - Requests for the meaning or definition of words. Users may inquire about the definitions
    of uncommon, complex, or unfamiliar terms, aiming to gain a clear understanding
    or contextual usage of the word in question.
  - Requests to assist with paying bills, such as utilities, credit cards, or other
    services. Users may specify the bill type, amount, and source account for the
    payment.
  - Requests for recommendations or suggestions for dining options. Users may ask
    for specific cuisine types, locations, or general ideas on where to eat.
- source_sentence: are there any expected delays for flight dl123
  sentences:
  - Requests for travel time or distance to a specific location. Users typically seek
    estimates based on current traffic, routes, or modes of transportation to determine
    the time needed to reach their destination.
  - Requests for information about flight details, such as boarding times, delays,
    or schedules. Users typically inquire to ensure they are updated about their flight's
    status.
  - Requests for advice or strategies to improve credit scores. Users may seek a detailed
    plan, tips, or insights into financial habits that can lead to a better credit
    rating.
- source_sentence: how do i ask about the weather in chinese
  sentences:
  - Requests related to translating words, phrases, or sentences from one language
    to another. The user may specify the source and target languages, and the goal
    is to provide an accurate and context-appropriate translation.
  - Requests for information about a vehicle's miles per gallon (MPG) rating, either
    in specific conditions like city driving or as an overall performance metric.
    Users may seek guidance on fuel efficiency for their car.
  - Requests for information about a vehicle's miles per gallon (MPG) rating, either
    in specific conditions like city driving or as an overall performance metric.
    Users may seek guidance on fuel efficiency for their car.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.9706666666666667
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9886666666666667
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.992
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9956666666666667
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.9706666666666667
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3295555555555556
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19840000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09956666666666668
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.9706666666666667
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9886666666666667
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.992
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9956666666666667
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9841961906084298
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9804173280423282
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9806052445247627
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-large-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("chinchilla04/bge-finetuned-train")
# Run inference
sentences = [
    'how do i ask about the weather in chinese',
    'Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.',
    "Requests for information about a vehicle's miles per gallon (MPG) rating, either in specific conditions like city driving or as an overall performance metric. Users may seek guidance on fuel efficiency for their car.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.9707     |
| cosine_accuracy@3   | 0.9887     |
| cosine_accuracy@5   | 0.992      |
| cosine_accuracy@10  | 0.9957     |
| cosine_precision@1  | 0.9707     |
| cosine_precision@3  | 0.3296     |
| cosine_precision@5  | 0.1984     |
| cosine_precision@10 | 0.0996     |
| cosine_recall@1     | 0.9707     |
| cosine_recall@3     | 0.9887     |
| cosine_recall@5     | 0.992      |
| cosine_recall@10    | 0.9957     |
| **cosine_ndcg@10**  | **0.9842** |
| cosine_mrr@10       | 0.9804     |
| cosine_map@100      | 0.9806     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 15,002 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 10.66 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 25 tokens</li><li>mean: 42.6 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 29 tokens</li><li>mean: 41.95 tokens</li><li>max: 58 tokens</li></ul> |
* Samples:
  | anchor                                                                            | positive                                                                                                                                                                                                                                  | negative                                                                                                                                                                                                                                                                                             |
  |:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what expression would i use to say i love you if i were an italian</code>   | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> | <code>Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.</code> |
  | <code>can you tell me how to say 'i do not speak much spanish', in spanish</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> | <code>Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.</code> |
  | <code>what is the equivalent of, 'life is good' in french</code>                  | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> | <code>Requests involving financial operations, such as transferring money between bank accounts, credit cards, or other financial instruments. Users typically specify the amount, the source account, and the target account, ensuring that the transfer is executed correctly and securely.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 3,000 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 11.06 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 36.16 tokens</li><li>max: 58 tokens</li></ul> |
* Samples:
  | anchor                                                | positive                                                                                                                                                                                                                                  |
  |:------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>in spanish, meet me tomorrow is said how</code> | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> |
  | <code>in french, how do i say, see you later</code>   | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> |
  | <code>how do you say hello in japanese</code>         | <code>Requests related to translating words, phrases, or sentences from one language to another. The user may specify the source and target languages, and the goal is to provide an accurate and context-appropriate translation.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `learning_rate`: 1e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | cosine_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:--------------:|
| None       | 0        | -             | 0.2730          | 0.9055         |
| 0.3198     | 150      | -             | 0.0698          | 0.9633         |
| 0.6397     | 300      | -             | 0.0642          | 0.9683         |
| 0.9595     | 450      | -             | 0.0603          | 0.9763         |
| 1.0661     | 500      | 1.0338        | -               | -              |
| 1.2793     | 600      | -             | 0.0612          | 0.9762         |
| 1.5991     | 750      | -             | 0.0602          | 0.9802         |
| 1.9190     | 900      | -             | 0.0571          | 0.9820         |
| 2.1322     | 1000     | 0.787         | -               | -              |
| 2.2388     | 1050     | -             | 0.0585          | 0.9819         |
| **2.5586** | **1200** | **-**         | **0.0565**      | **0.9842**     |
| 2.8785     | 1350     | -             | 0.0578          | 0.9837         |
| 3.1983     | 1500     | 0.6768        | 0.0570          | 0.9844         |
| 3.5181     | 1650     | -             | 0.0587          | 0.9837         |
| 3.8380     | 1800     | -             | 0.0584          | 0.9837         |
| None       | 0        | -             | 0.0565          | 0.9842         |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->