Commit
·
285573d
1
Parent(s):
d33cc3d
added model together with usage example and the README
Browse files- README.md +61 -0
- config.json +26 -0
- model.safetensors +3 -0
- model_usage_example.py +87 -0
- special_tokens_map.json +7 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- cjvt/cc_gigafida
|
5 |
+
- cjvt/solar3
|
6 |
+
- cjvt/sloleks
|
7 |
+
language:
|
8 |
+
- cro
|
9 |
+
tags:
|
10 |
+
- word spelling error annotator
|
11 |
+
---
|
12 |
+
|
13 |
+
---
|
14 |
+
language:
|
15 |
+
- cro
|
16 |
+
|
17 |
+
license: cc-by-sa-4.0
|
18 |
+
---
|
19 |
+
|
20 |
+
# BERTic-Incorrect-Spelling-Annotator
|
21 |
+
|
22 |
+
This BERTic model is designed to annotate incorrectly spelled words in text. It utilizes the following labels:
|
23 |
+
|
24 |
+
- 0: Word is written correctly,
|
25 |
+
- 1: Word is written incorrectly.
|
26 |
+
|
27 |
+
## Model Output Example
|
28 |
+
|
29 |
+
Imagine we have the following Croatian text:
|
30 |
+
|
31 |
+
_Model u tekstu prepoznije riječi u kojima se nalazaju pogreške ._
|
32 |
+
|
33 |
+
If we convert input data to format acceptable by BERTic model:
|
34 |
+
|
35 |
+
_[CLS] model [MASK] u [MASK] tekstu [MASK] prepo ##znije [MASK] riječi [MASK] u [MASK] kojima [MASK] se [MASK] nalaza ##ju [MASK] pogreške [MASK] . [MASK] [SEP]_
|
36 |
+
|
37 |
+
The model might return the following predictions (note: predictions chosen for demonstration/explanation, not reproducibility!):
|
38 |
+
|
39 |
+
_Model 0 u 0 tekstu 0 prepoznije 1 riječi 0 u 0 kojima 0 se 0 nalazaju 1 pogreške 0 . 0_
|
40 |
+
|
41 |
+
We can observe that in the input sentence, the word `prepoznije` and `nalazaju` are spelled incorrectly, so the model marks them with the token (1).
|
42 |
+
|
43 |
+
## More details
|
44 |
+
|
45 |
+
Testing model with **generated** test sets provides following result:
|
46 |
+
|
47 |
+
Precision: 0.9954
|
48 |
+
Recall: 0.8764
|
49 |
+
F1 Score: 0.9321
|
50 |
+
F0.5 Score: 0.9691
|
51 |
+
|
52 |
+
Testing the model with test sets constructed using the **Croatian corpus of non-professional written language by typical speakers and speakers with language disorders RAPUT 1.0** dataset provides the following results:
|
53 |
+
|
54 |
+
Precision: 0.8213
|
55 |
+
Recall: 0.3921
|
56 |
+
F1 Score: 0.5308
|
57 |
+
F0.5 Score: 0.6738
|
58 |
+
|
59 |
+
## Authors
|
60 |
+
|
61 |
+
Thanks to Martin Božič, Marko Robnik-Šikonja and Špela Arhar Holdt for developing this model.
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./BERTic",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.37.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:296ea1e18f2c377a85f7ace0867ccf264318fe0caf2f04c4d773ef0774f57fbb
|
3 |
+
size 440136504
|
model_usage_example.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from transformers import BertTokenizer, BertForTokenClassification
|
4 |
+
import re
|
5 |
+
import string
|
6 |
+
|
7 |
+
|
8 |
+
def preprocess_input_text(text):
|
9 |
+
"""
|
10 |
+
This function adds a [MASK] token after each word, inserts a space before every punctuation mark,
|
11 |
+
and converts all words to lowercase.
|
12 |
+
|
13 |
+
It returns the original words from the input text along with the preprocessed version of the input text.
|
14 |
+
"""
|
15 |
+
text = re.sub(r'([' + string.punctuation + '])', r' \1', text)
|
16 |
+
text = re.sub(' +', ' ', text)
|
17 |
+
|
18 |
+
words = text.split(" ")
|
19 |
+
|
20 |
+
text = text.lower()
|
21 |
+
|
22 |
+
output = []
|
23 |
+
|
24 |
+
for word in text.split(" "):
|
25 |
+
output.append(word)
|
26 |
+
output.append("[MASK]")
|
27 |
+
|
28 |
+
return words, " ".join(output)
|
29 |
+
|
30 |
+
|
31 |
+
def predict_using_trained_model_old(input_text, model_dir, device):
|
32 |
+
"""
|
33 |
+
This function loads a model and predicts whether each word in the input text is correct or incorrect.
|
34 |
+
|
35 |
+
The output is the input text, where each word is followed by a label indicating whether the word is correct (0) or incorrect (1).
|
36 |
+
"""
|
37 |
+
|
38 |
+
words, input_text = preprocess_input_text(input_text)
|
39 |
+
|
40 |
+
tokenizer = BertTokenizer.from_pretrained(model_dir)
|
41 |
+
model = BertForTokenClassification.from_pretrained(model_dir, num_labels=2)
|
42 |
+
|
43 |
+
model.to(device)
|
44 |
+
|
45 |
+
tokenized_inputs = tokenizer(input_text, max_length=128, padding='max_length', truncation=True, return_tensors="pt")
|
46 |
+
input_ids = tokenized_inputs["input_ids"].to(device)
|
47 |
+
attention_mask = tokenized_inputs["attention_mask"].to(device)
|
48 |
+
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
53 |
+
logits = outputs.logits
|
54 |
+
|
55 |
+
predictions = torch.argmax(logits, dim=-1).squeeze().cpu().numpy()
|
56 |
+
|
57 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids.squeeze().cpu().numpy())
|
58 |
+
|
59 |
+
model_output = []
|
60 |
+
mask_index = 0
|
61 |
+
|
62 |
+
for token, prediction in zip(tokens, predictions):
|
63 |
+
if token == "[MASK]":
|
64 |
+
model_output.append(str(prediction))
|
65 |
+
mask_index += 1
|
66 |
+
elif token != "[CLS]" and token != "[SEP]" and token != "[PAD]":
|
67 |
+
model_output.append(words[mask_index])
|
68 |
+
|
69 |
+
return " ".join(model_output)
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == '__main__':
|
73 |
+
input_text = "Model u tekstu prepoznije riječi u kojima se nalazaju pogreške."
|
74 |
+
model_dir = "."
|
75 |
+
|
76 |
+
if torch.cuda.is_available():
|
77 |
+
device = torch.device("cuda")
|
78 |
+
elif torch.backends.mps.is_available():
|
79 |
+
device = torch.device("mps")
|
80 |
+
else:
|
81 |
+
device = torch.device("cpu")
|
82 |
+
|
83 |
+
print(f"Using device: {device}")
|
84 |
+
|
85 |
+
model_output_text = predict_using_trained_model_old(input_text, model_dir, device)
|
86 |
+
|
87 |
+
print(f"Model output: {model_output_text}")
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_len": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": false,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|