ckandemir commited on
Commit
0313936
·
1 Parent(s): 5160b90

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/speecht5_tts
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - voxpopuli
8
+ model-index:
9
+ - name: speecht5_finetuned_voxpopuli_fr
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # speecht5_finetuned_voxpopuli_fr
17
+
18
+ This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4697
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 4
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 8
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - training_steps: 1000
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss |
53
+ |:-------------:|:-----:|:----:|:---------------:|
54
+ | 0.765 | 0.23 | 50 | 0.6575 |
55
+ | 0.687 | 0.47 | 100 | 0.6106 |
56
+ | 0.6423 | 0.7 | 150 | 0.5548 |
57
+ | 0.5792 | 0.94 | 200 | 0.5300 |
58
+ | 0.5658 | 1.17 | 250 | 0.5186 |
59
+ | 0.5558 | 1.41 | 300 | 0.5078 |
60
+ | 0.5484 | 1.64 | 350 | 0.5029 |
61
+ | 0.5427 | 1.87 | 400 | 0.4981 |
62
+ | 0.5349 | 2.11 | 450 | 0.4921 |
63
+ | 0.524 | 2.34 | 500 | 0.4906 |
64
+ | 0.5243 | 2.58 | 550 | 0.4857 |
65
+ | 0.5238 | 2.81 | 600 | 0.4835 |
66
+ | 0.5104 | 3.05 | 650 | 0.4796 |
67
+ | 0.516 | 3.28 | 700 | 0.4769 |
68
+ | 0.5084 | 3.51 | 750 | 0.4763 |
69
+ | 0.5029 | 3.75 | 800 | 0.4749 |
70
+ | 0.5015 | 3.98 | 850 | 0.4725 |
71
+ | 0.5045 | 4.22 | 900 | 0.4716 |
72
+ | 0.503 | 4.45 | 950 | 0.4706 |
73
+ | 0.5013 | 4.69 | 1000 | 0.4697 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.31.0
79
+ - Pytorch 2.0.1+cu118
80
+ - Datasets 2.14.2
81
+ - Tokenizers 0.13.3