--- license: mit language: - pt base_model: - Qwen/Qwen2.5-0.5B-Instruct pipeline_tag: text-generation datasets: - adalbertojunior/openHermes_portuguese - cnmoro/smoltalk-555k-ptbr - cnmoro/RagMixPTBR-Legal-Alpaca-2M model-index: - name: Qwen2.5-0.5B-Portuguese-v1 results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 37.86 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 34.63 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 33.12 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 86.3 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 54.3 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 65.33 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 44.06 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 55.1 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 45.96 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1 name: Open Portuguese LLM Leaderboard --- Qwen2.5-0.5B finetuned for proficiency in Portuguese language and increased intelligence. ```text https://ollama.com/cnmoro/Qwen2.5-0.5B-Portuguese-v1 ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "cnmoro/Qwen2.5-0.5B-Portuguese-v1" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Escreva uma breve introdução sobre LLMs (Large Language Models) e suas aplicações." # System prompt is always injected and hardcoded automatically # for ideal performance in portuguese language. # No need to write it again. messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] response # LLM significa Large Language Models, que são modelos de linguagem computacional # projetados para simular a inteligência humana no processamento e geração de texto. # Esses modelos usam técnicas avançadas de aprendizado de máquina e redes neurais para # compreender e gerar texto com base em dados de entrada. As aplicações de LLM incluem # tradução automática, análise de sentimento, modelagem de tópicos e resposta a perguntas # automatizadas. Eles estão sendo cada vez mais utilizados em diversas áreas, como # saúde, educação e finanças, para melhorar a comunicação, as experiências dos clientes # e os resultados da pesquisa. ``` ## Overall Results | Task | Metric | Value | Stdev | | ------------------------ | --------------- | ------- | ------- | | assin2_rte | f1_macro | 0.391 | 0.006 | | assin2_rte | acc | 0.527 | 0.007 | | assin2_sts | pearson | 0.115 | 0.014 | | assin2_sts | mse | 1.011 | N/A | | bluex | acc | 0.349 | 0.010 | | enem_challenge | acc | 0.363 | 0.007 | | faquad_nli | f1_macro | 0.595 | 0.017 | | faquad_nli | acc | 0.791 | 0.011 | | hatebr_offensive | f1_macro | 0.338 | 0.005 | | hatebr_offensive | acc | 0.502 | 0.009 | | oab_exams | acc | 0.326 | 0.006 | | portuguese_hate_speech | f1_macro | 0.412 | 0.004 | | portuguese_hate_speech | acc | 0.702 | 0.011 | | tweetsentbr | f1_macro | 0.455 | 0.005 | | tweetsentbr | acc | 0.594 | 0.008 | ## Detailed Results ### assin2_rte | Metric | Value | Stdev | | --------- | ----- | ----- | | f1_macro | 0.391 | 0.006 | | acc | 0.527 | 0.007 | ### assin2_sts | Metric | Value | Stdev | | --------- | ----- | ----- | | pearson | 0.115 | 0.014 | | mse | 1.011 | N/A | ### bluex | Exam ID | Metric | Value | Stdev | | ----------------------- | ------ | -------- | -------- | | all | acc | 0.349 | 0.010 | | USP_2019 | acc | 0.225 | 0.038 | | USP_2024 | acc | 0.293 | 0.041 | | USP_2021 | acc | 0.423 | 0.040 | | UNICAMP_2018 | acc | 0.241 | 0.034 | | UNICAMP_2024 | acc | 0.444 | 0.043 | | USP_2020 | acc | 0.393 | 0.038 | | UNICAMP_2020 | acc | 0.291 | 0.035 | | UNICAMP_2021_1 | acc | 0.326 | 0.040 | | UNICAMP_2022 | acc | 0.487 | 0.046 | | USP_2022 | acc | 0.388 | 0.040 | | UNICAMP_2019 | acc | 0.280 | 0.037 | | UNICAMP_2021_2 | acc | 0.294 | 0.037 | | UNICAMP_2023 | acc | 0.558 | 0.044 | | USP_2023 | acc | 0.364 | 0.042 | | USP_2018 | acc | 0.278 | 0.035 | ### enem_challenge | Exam ID | Metric | Value | Stdev | | --------- | ------ | ----- | ----- | | all | acc | 0.363 | 0.007 | | 2016_2 | acc | 0.390 | 0.025 | | 2015 | acc | 0.319 | 0.025 | | 2011 | acc | 0.410 | 0.026 | | 2013 | acc | 0.398 | 0.027 | | 2017 | acc | 0.319 | 0.025 | | 2022 | acc | 0.376 | 0.024 | | 2009 | acc | 0.226 | 0.023 | | 2010 | acc | 0.444 | 0.026 | | 2012 | acc | 0.345 | 0.025 | | 2014 | acc | 0.339 | 0.026 | | 2016 | acc | 0.397 | 0.026 | | 2023 | acc | 0.385 | 0.024 | ### faquad_nli | Metric | Value | Stdev | | --------- | ----- | ----- | | f1_macro | 0.595 | 0.017 | | acc | 0.791 | 0.011 | ### hatebr_offensive | Metric | Value | Stdev | | --------- | ----- | ----- | | f1_macro | 0.338 | 0.005 | | acc | 0.502 | 0.009 | ### oab_exams | Exam ID | Metric | Value | Stdev | | ------------- | ------ | ----- | ----- | | all | acc | 0.326 | 0.006 | | 2018-25 | acc | 0.400 | 0.032 | | 2016-20a | acc | 0.238 | 0.027 | | 2011-05 | acc | 0.400 | 0.032 | | 2012-08 | acc | 0.325 | 0.030 | | 2012-09 | acc | 0.260 | 0.029 | | 2014-13 | acc | 0.325 | 0.030 | | 2011-03 | acc | 0.313 | 0.027 | | 2016-20 | acc | 0.275 | 0.029 | | 2012-06a | acc | 0.325 | 0.030 | | 2017-22 | acc | 0.338 | 0.031 | | 2015-16 | acc | 0.325 | 0.030 | | 2013-12 | acc | 0.300 | 0.030 | | 2017-24 | acc | 0.250 | 0.028 | | 2012-06 | acc | 0.238 | 0.027 | | 2014-14 | acc | 0.325 | 0.030 | | 2013-11 | acc | 0.325 | 0.030 | | 2013-10 | acc | 0.413 | 0.032 | | 2010-02 | acc | 0.390 | 0.028 | | 2016-21 | acc | 0.375 | 0.031 | | 2015-18 | acc | 0.300 | 0.030 | | 2015-17 | acc | 0.282 | 0.029 | | 2016-19 | acc | 0.333 | 0.031 | | 2012-07 | acc | 0.388 | 0.031 | | 2017-23 | acc | 0.325 | 0.030 | | 2011-04 | acc | 0.350 | 0.031 | | 2010-01 | acc | 0.282 | 0.028 | | 2014-15 | acc | 0.385 | 0.032 | ### portuguese_hate_speech | Metric | Value | Stdev | | --------- | ----- | ----- | | f1_macro | 0.412 | 0.004 | | acc | 0.702 | 0.011 | ### tweetsentbr | Metric | Value | Stdev | | --------- | ----- | ----- | | f1_macro | 0.455 | 0.005 | | acc | 0.594 | 0.008 | ## Model Meta Information * **Truncated Samples:** 3863 * **Non-Truncated Samples:** 10287 * **Padded Samples:** 0 * **Non-Padded Samples:** 14150 * **Fewshots Truncated:** 3863 * **Has Chat Template:** True * **Chat Type:** system\_user\_assistant * **Number of GPUs:** 1 * **Accelerate Number of Processes:** N/A * **Model SHA:** None * **Model Data Type:** torch.bfloat16 * **Model Memory Footprint:** 988065664 bytes * **Model Number of Parameters:** 494032768 * **Model is Loaded in 4bit:** N/A * **Model is Loaded in 8bit:** N/A * **Model is Quantized:** N/A * **Model Device:** cuda:0 * **Batch Size:** 1 * **Max Length:** 512 * **Max Context Length** 480 * **Max Generation Tokens:** 32 * **Effective Batch Size:** 1.0 # Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/cnmoro/Qwen2.5-0.5B-Portuguese-v1) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**50.74**| |ENEM Challenge (No Images)| 37.86| |BLUEX (No Images) | 34.63| |OAB Exams | 33.12| |Assin2 RTE | 86.30| |Assin2 STS | 54.30| |FaQuAD NLI | 65.33| |HateBR Binary | 44.06| |PT Hate Speech Binary | 55.10| |tweetSentBR | 45.96|