--- license: apache-2.0 pipeline_tag: image-segmentation tags: - medical - biology - histology --- # Cellpose Nuclei Segmentation Model Trained With High Grade Serous Ovarian Cancer Dataset! # Dataset classes ``` nuclei_classes = { 0: "background", 1: "neoplastic", 2: "inflammatory", 3: "connective", 4: "dead", 5: "macrophage_cytoplasm", 6: "macrophage_nucleus", } ``` ## 1. Install cellseg_models.pytorch and albumentations ``` pip install cellseg-models-pytorch pip install albumentations ``` ## 2. Load trained model ```python from cellseg_models_pytorch.models.cellpose import CellPose model = CellPose.from_pretrained("csmp-hub/cellpose-histo-hgsc-nuc-v1") ``` ## 3. Run inference for one image ```python from albumentations import Resize, Compose from cellseg_models_pytorch.utils import FileHandler from cellseg_models_pytorch.transforms.albu_transforms import MinMaxNormalization model.set_inference_mode() # Resize to multiple of 32 of your own choosing transform = Compose([Resize(1024, 1024), MinMaxNormalization()]) im = FileHandler.read_img(IMG_PATH) im = transform(image=im)["image"] prob = model.predict(im) out = model.post_process(prob) # out = {"nuc": [(nuc instances (H, W), nuc types (H, W))], "cyto": None, "tissue": None} ``` ## 3.1 Run inference for image batch ```python import torch from cellseg_models_pytorch.utils import FileHandler model.set_inference_mode() # dont use random matrices IRL batch = torch.rand(8, 3, 1024, 1024) prob = model.predict(im) out = model.post_process(prob) # out = { # "nuc": [ # (nuc instances (H, W), nuc types (H, W)), # (nuc instances (H, W), nuc types (H, W)), # . # . # . # (nuc instances (H, W), nuc types (H, W)) # ], # "cyto": None, # "tissue": None #} ``` ## 4. Visualize output ```python from matplotlib import pyplot as plt from skimage.color import label2rgb fig, ax = plt.subplots(2, 3, figsize=(18, 6)) ax[0].imshow(im) ax[1].imshow(label2rgb(out["nuc"][0][0], bg_label=0)) # inst_map ax[2].imshow(label2rgb(out["nuc"][0][1], bg_label=0)) # type_map ``` ## Citation cellseg_models.pytorch: ``` @misc{https://doi.org/10.5281/zenodo.12666959, doi = {10.5281/ZENODO.12666959}, url = {https://zenodo.org/doi/10.5281/zenodo.12666959}, author = {Okunator, }, title = {okunator/cellseg_models.pytorch: v0.2.0}, publisher = {Zenodo}, year = {2024}, copyright = {Creative Commons Attribution 4.0 International} } ``` Cellpose original paper: ``` @article{Stringer2020, title = {Cellpose: a generalist algorithm for cellular segmentation}, volume = {18}, ISSN = {1548-7105}, url = {http://dx.doi.org/10.1038/s41592-020-01018-x}, DOI = {10.1038/s41592-020-01018-x}, number = {1}, journal = {Nature Methods}, publisher = {Springer Science and Business Media LLC}, author = {Stringer, Carsen and Wang, Tim and Michaelos, Michalis and Pachitariu, Marius}, year = {2020}, month = dec, pages = {100–106} } ``` ## Licence These model weights are released under the Apache License, Version 2.0 (the "License"). You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ## Additional Terms While the Apache 2.0 License grants broad permissions, we kindly request that users adhere to the following guidelines: Medical or Clinical Use: This model is not intended for use in medical diagnosis, treatment, or prevention of disease of real patients. It should not be used as a substitute for professional medical advice.