File size: 2,437 Bytes
0a7000d
 
 
 
 
 
f246dd2
 
0a7000d
 
 
 
 
 
 
 
 
 
 
fddd60f
f246dd2
 
0a7000d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f246dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e572ae
f246dd2
 
0a7000d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dinov2-base_rice-leaf-disease-augmented_tl_020125
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dinov2-base_rice-leaf-disease-augmented_tl_020125

This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1132
- Accuracy: 0.966

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 1.1218        | 1.0   | 250  | 0.825    | 0.5307          |
| 0.4069        | 2.0   | 500  | 0.885    | 0.3582          |
| 0.2746        | 3.0   | 750  | 0.92     | 0.2464          |
| 0.2157        | 4.0   | 1000 | 0.9315   | 0.2224          |
| 0.1779        | 5.0   | 1250 | 0.949    | 0.1753          |
| 0.1539        | 6.0   | 1500 | 0.942    | 0.1718          |
| 0.1361        | 7.0   | 1750 | 0.9515   | 0.1603          |
| 0.1271        | 8.0   | 2000 | 0.958    | 0.1448          |
| 0.1114        | 9.0   | 2250 | 0.951    | 0.1444          |
| 0.1023        | 10.0  | 2500 | 0.959    | 0.1309          |
| 0.0968        | 11.0  | 2750 | 0.9625   | 0.1240          |
| 0.0911        | 12.0  | 3000 | 0.9645   | 0.1248          |
| 0.0858        | 13.0  | 3250 | 0.962    | 0.1189          |
| 0.0818        | 14.0  | 3500 | 0.9645   | 0.1136          |
| 0.0789        | 15.0  | 3750 | 0.966    | 0.1132          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0