Upload 9 files
Browse files- .gitattributes +9 -26
- README.md +90 -0
- config.json +86 -0
- flax_model.msgpack +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -1,34 +1,17 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
4 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: zh
|
3 |
+
widget:
|
4 |
+
- text: "江苏警方通报特斯拉冲进店铺"
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
# Chinese RoBERTa-Base Model for NER
|
9 |
+
|
10 |
+
## Model description
|
11 |
+
|
12 |
+
The model is used for named entity recognition. You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo) (in UER-py format), or via HuggingFace from the link [roberta-base-finetuned-cluener2020-chinese](https://huggingface.co/uer/roberta-base-finetuned-cluener2020-chinese).
|
13 |
+
|
14 |
+
## How to use
|
15 |
+
|
16 |
+
You can use this model directly with a pipeline for token classification :
|
17 |
+
|
18 |
+
```python
|
19 |
+
>>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline
|
20 |
+
>>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
|
21 |
+
>>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
|
22 |
+
>>> ner = pipeline('ner', model=model, tokenizer=tokenizer)
|
23 |
+
>>> ner("江苏警方通报特斯拉冲进店铺")
|
24 |
+
[
|
25 |
+
{'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1},
|
26 |
+
{'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2},
|
27 |
+
{'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7},
|
28 |
+
{'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8},
|
29 |
+
{'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9}
|
30 |
+
]
|
31 |
+
```
|
32 |
+
|
33 |
+
## Training data
|
34 |
+
|
35 |
+
[CLUENER2020](https://github.com/CLUEbenchmark/CLUENER2020) is used as training data. We only use the train set of the dataset.
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved.
|
40 |
+
|
41 |
+
```
|
42 |
+
python3 run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
|
43 |
+
--vocab_path models/google_zh_vocab.txt \
|
44 |
+
--train_path datasets/cluener2020/train.tsv \
|
45 |
+
--dev_path datasets/cluener2020/dev.tsv \
|
46 |
+
--label2id_path datasets/cluener2020/label2id.json \
|
47 |
+
--output_model_path models/cluener2020_ner_model.bin \
|
48 |
+
--learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512
|
49 |
+
```
|
50 |
+
|
51 |
+
Finally, we convert the pre-trained model into Huggingface's format:
|
52 |
+
|
53 |
+
```
|
54 |
+
python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \
|
55 |
+
--output_model_path pytorch_model.bin \
|
56 |
+
--layers_num 12
|
57 |
+
```
|
58 |
+
|
59 |
+
### BibTeX entry and citation info
|
60 |
+
|
61 |
+
```
|
62 |
+
@article{devlin2018bert,
|
63 |
+
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
|
64 |
+
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
|
65 |
+
journal={arXiv preprint arXiv:1810.04805},
|
66 |
+
year={2018}
|
67 |
+
}
|
68 |
+
|
69 |
+
@article{liu2019roberta,
|
70 |
+
title={Roberta: A robustly optimized bert pretraining approach},
|
71 |
+
author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
|
72 |
+
journal={arXiv preprint arXiv:1907.11692},
|
73 |
+
year={2019}
|
74 |
+
}
|
75 |
+
|
76 |
+
@article{xu2020cluener2020,
|
77 |
+
title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese},
|
78 |
+
author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei},
|
79 |
+
journal={arXiv preprint arXiv:2001.04351},
|
80 |
+
year={2020}
|
81 |
+
}
|
82 |
+
|
83 |
+
@article{zhao2019uer,
|
84 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
85 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
86 |
+
journal={EMNLP-IJCNLP 2019},
|
87 |
+
pages={241},
|
88 |
+
year={2019}
|
89 |
+
}
|
90 |
+
```
|
config.json
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"hidden_act": "gelu",
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"hidden_size": 768,
|
9 |
+
"id2label": {
|
10 |
+
"0": "O",
|
11 |
+
"1": "B-address",
|
12 |
+
"2": "I-address",
|
13 |
+
"3": "B-book",
|
14 |
+
"4": "I-book",
|
15 |
+
"5": "B-company",
|
16 |
+
"6": "I-company",
|
17 |
+
"7": "B-game",
|
18 |
+
"8": "I-game",
|
19 |
+
"9": "B-government",
|
20 |
+
"10": "I-government",
|
21 |
+
"11": "B-movie",
|
22 |
+
"12": "I-movie",
|
23 |
+
"13": "B-name",
|
24 |
+
"14": "I-name",
|
25 |
+
"15": "B-organization",
|
26 |
+
"16": "I-organization",
|
27 |
+
"17": "B-position",
|
28 |
+
"18": "I-position",
|
29 |
+
"19": "B-scene",
|
30 |
+
"20": "I-scene",
|
31 |
+
"21": "S-address",
|
32 |
+
"22": "S-book",
|
33 |
+
"23": "S-company",
|
34 |
+
"24": "S-game",
|
35 |
+
"25": "S-government",
|
36 |
+
"26": "S-movie",
|
37 |
+
"27": "S-name",
|
38 |
+
"28": "S-organization",
|
39 |
+
"29": "S-position",
|
40 |
+
"30": "S-scene",
|
41 |
+
"31": "[PAD]"
|
42 |
+
},
|
43 |
+
"initializer_range": 0.02,
|
44 |
+
"intermediate_size": 3072,
|
45 |
+
"label2id": {
|
46 |
+
"B-address": 1,
|
47 |
+
"B-book": 3,
|
48 |
+
"B-company": 5,
|
49 |
+
"B-game": 7,
|
50 |
+
"B-government": 9,
|
51 |
+
"B-movie": 11,
|
52 |
+
"B-name": 13,
|
53 |
+
"B-organization": 15,
|
54 |
+
"B-position": 17,
|
55 |
+
"B-scene": 19,
|
56 |
+
"I-address": 2,
|
57 |
+
"I-book": 4,
|
58 |
+
"I-company": 6,
|
59 |
+
"I-game": 8,
|
60 |
+
"I-government": 10,
|
61 |
+
"I-movie": 12,
|
62 |
+
"I-name": 14,
|
63 |
+
"I-organization": 16,
|
64 |
+
"I-position": 18,
|
65 |
+
"I-scene": 20,
|
66 |
+
"O": 0,
|
67 |
+
"S-address": 21,
|
68 |
+
"S-book": 22,
|
69 |
+
"S-company": 23,
|
70 |
+
"S-game": 24,
|
71 |
+
"S-government": 25,
|
72 |
+
"S-movie": 26,
|
73 |
+
"S-name": 27,
|
74 |
+
"S-organization": 28,
|
75 |
+
"S-position": 29,
|
76 |
+
"S-scene": 30,
|
77 |
+
"[PAD]": 31
|
78 |
+
},
|
79 |
+
"layer_norm_eps": 1e-12,
|
80 |
+
"max_position_embeddings": 512,
|
81 |
+
"model_type": "bert",
|
82 |
+
"num_attention_heads": 12,
|
83 |
+
"num_hidden_layers": 12,
|
84 |
+
"pad_token_id": 0,
|
85 |
+
"vocab_size": 21128
|
86 |
+
}
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fcc5a4fdb2a83463bf4f65ea0d60e3ecb31963cf85f4f513f3b48150b522b57
|
3 |
+
size 406813802
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b865252516115c46bc508167fa2258f198bcce520eb7a1ac4fbf8d50dc361368
|
3 |
+
size 406892015
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b129d0ae906c9579f8d118d9a84df27304676d6e8822389c776e8ea33423feb5
|
3 |
+
size 407074912
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "tokenizer_file": null}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|