--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = 'datapaf/fvt_ift_rus' tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map='auto' ) chat = [ {"role": "system", "content": "Ты AI-помощник, ответь на вопрос"}, {"role": "user", "content": "Привет! Как дела?"}, ] templated = tokenizer.apply_chat_template(chat, tokenize=False) encoded = tokenizer(templated, return_tensors="pt",add_special_tokens=True) inputs = {key: tensor.to(model.device) for key, tensor in encoded.items()} output = model.generate( **inputs, max_new_tokens=1024, do_sample=False, repetition_penalty=1.2 ) decoded_output = tokenizer.decode( output[0][inputs['input_ids'].size(1)+2:], skip_special_tokens=True ) print(decoded_output) ```