--- dataset_info: features: - name: review dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 91153465 num_examples: 159443 - name: validation num_bytes: 11526130 num_examples: 19933 - name: test num_bytes: 11522522 num_examples: 19928 download_size: 75005133 dataset_size: 114202117 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* task_categories: - text-classification language: - fr --- # Allocine_clean In the [allocine](https://huggingface.co/datasets/tblard/allocine) dataset there are leaks and duplicated data: - Leakage between train split and test split: 23 - Leakage between validation split and test split: 15 - Duplicated lines in the train split: 534 - Duplicated lines in the validation split: 52 - Duplicated lines in the test split: 72 In all, this means 0.6% of test data are biased. So this version is a cleaned version of the allocine dataset, i.e. without leaks and duplicated data. It is likely that the resulting dataset is still imperfect, with annotation problems requiring further proofreading/correction. ``` DatasetDict({ train: Dataset({ features: ['review', 'label'], num_rows: 159443 #160000 before }) validation: Dataset({ features: ['review', 'label'], num_rows: 19933 #20000 before }) test: Dataset({ features: ['review', 'label'], num_rows: 19928 #20000 before }) }) ```