Datasets:

Modalities:
Image
Text
ArXiv:
Libraries:
Datasets
brianestadimas commited on
Commit
d7fb5dd
·
verified ·
1 Parent(s): bba308d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GenSC-6G - Scalable Semantic Communication Framework and Dataset
2
+
3
+ This repository contains the **first semantic communication dataset and playground**, designed to be scalable, reproducible, and adaptable for a wide range of applications. The dataset and framework are tailored for semantic decoding, classification, and localization tasks in 6G applications, integrating generative AI and semantic communication. Implementation of **[GenSC-6G: A Prototype Testbed for Integrated Generative AI, Quantum, and Semantic Communication](https://arxiv.org/abs/2501.09918)**.
4
+
5
+ ---
6
+ ## Citation
7
+ The paper can be found at [arXiv](https://arxiv.org/abs/2501.09918).
8
+ If you use this dataset or framework in your research, please cite:
9
+
10
+ ```bibtex
11
+ @article{gensc6g,
12
+ title={GenSC-6G: A Prototype Testbed for Integrated Generative AI, Quantum, and Semantic Communication},
13
+ author={Brian E. Arfeto and Shehbaz Tariq and Uman Khalid and Trung Q. Duong and Hyundong Shin},
14
+ year={2025},
15
+ eprint={2501.09918},
16
+ archivePrefix={arXiv},
17
+ primaryClass={cs.AI},
18
+ url={https://arxiv.org/abs/2501.09918},
19
+ }
20
+ ```
21
+ ---
22
+
23
+ ## Features of the GenSC-6G Dataset
24
+
25
+ ### 🔧 Adaptable SC Framework
26
+ A flexible prototype that supports modifications to baseline models, communication modules, and decoders, enabling customization for diverse communication needs.
27
+
28
+ ### 🤖 Generative AI-Driven SC
29
+ The integration of generative AI for synthetic data generation, enriching the Knowledge Base (KB) and leveraging large language model (LLM) capabilities for enhanced semantic tasks.
30
+
31
+ ### 📊 Noise-Augmented Dataset
32
+ A labeled dataset with injected noise, specifically optimized for semantic tasks such as target recognition, localization, and recovery. The dataset comprises 4,829 training and 1,320 testing instances across 15 classes of military and civilian vehicle types. It incorporates Additive White Gaussian Noise (AWGN) and Radio Frequency (RF) interference at varying Signal-to-Noise Ratios (SNRs) to evaluate model robustness under realistic channel conditions.
33
+
34
+ ### 📥 Dataset Download and Overview
35
+
36
+ #### Main Dataset
37
+ **[Download the main dataset here](https://huggingface.co/datasets/CQILAB/GenSC-6G)**
38
+
39
+ #### Segmentation Dataset
40
+ **[Download the segmentation dataset here](https://huggingface.co/datasets/CQILAB/GenSC-6G-Segmentation)**
41
+
42
+
43
+ ## Setup Instructions
44
+ Can be found in Official Repository: [CQILAB/GenSC-6G](https://github.com/CQILAB-Official/GenSC-6G)
45
+
46
+ ## Reproducibility
47
+
48
+ ### 🗃️ Dataset
49
+ Labeled dataset with ground-truth data, noise features, and extracted semantic features. Uploaded to **[HuggingFace🤗](https://huggingface.co/datasets/CQILAB/GenSC-6G)**
50
+ #### Dataset Columns and Descriptions
51
+ - **image**: Raw image data used for training and evaluation.
52
+ - **image_path**: Path to the corresponding image file.
53
+ - **classification_class**: Integer label corresponding to the classification category (0-15).
54
+ - **classification_{basemodel}_features**: Extracted feature embeddings from `{basemodel}`'s encoder, consisting of 1000 float32 tensors.
55
+ - **classification_awgn10dB_{basemodel}_features**: Feature embeddings extracted from `{basemodel}` encoder with Additive White Gaussian Noise (AWGN) at 10dB SNR.
56
+ - **classification_awgn30dB_{basemodel}_features**: Feature embeddings extracted from `{basemodel}` encoder with AWGN at 30dB SNR.
57
+ - **upsampling_{basemodel}_features**: Extracted feature embeddings for upsampling tasks using `{basemodel}` encoder, consisting of 1000 float32 tensors.
58
+ - **upsampling_awgn10dB_{basemodel}_features**: Upsampling features with AWGN at 10dB SNR for `{basemodel}`.
59
+ - **upsampling_awgn30dB_{basemodel}_features**: Upsampling features with AWGN at 30dB SNR for `{basemodel}`.
60
+
61
+ ### 🏗️ Testbed
62
+ To experiment with real-world semantic communication, you can use the **GNURadio and HackRF**.
63
+ 1. **Install Dependencies**:
64
+ - Install [GNU Radio](https://www.gnuradio.org/)
65
+ - Install HackRF tools: `sudo apt install hackrf`
66
+ 2. **Configure Transceiver**:
67
+ - Transmitter config: `GNURadio/transmitter.grc`
68
+ - Outputs a **streaming binary file**
69
+ 3. **Run Transmitter**:
70
+ - Open `GNURadio/transmitter.grc` in GNU Radio Companion
71
+ - Set SDR parameters (frequency, gain, bandwidth)
72
+ - Execute to start transmission
73
+ 4. **Run Receiver**:
74
+ - Modify `GNURadio/receiver.grc` settings
75
+ - Run to capture and process signals
76
+ By following these steps, you can replicate real-world transmission experiments using the testbed and analyze its performance.
77
+
78
+
79
+ ### 📊 Performance Metrics & Flexible Code
80
+ Can be found in Official Repository: [CQILAB/GenSC-6G](https://github.com/CQILAB-Official/GenSC-6G)
81
+
82
+
83
+ ## Others
84
+
85
+ - Official Repository: [CQILAB/GenSC-6G](https://github.com/CQILAB-Official/GenSC-6G)
86
+ - Dataset: [HuggingFace](https://huggingface.co/datasets/CQILAB/GenSC-6G)
87
+
88
+ ## License
89
+ ```
90
+ MIT License
91
+ ```