Datasets:
Tasks:
Audio Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
File size: 4,982 Bytes
1153882 0ee53fa e973f45 0ee53fa e973f45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
---
language:
- en
license: cc-by-4.0
pretty_name: Free Music Archive (FMA) Dataset
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- audio-classification
task_ids:
- multi-class-classification
---
# Free Music Archive (FMA) Dataset
## Overview
This repository contains the Free Music Archive (FMA) dataset, curated and made available on Hugging Face by [dragunflie-420](https://huggingface.co/dragunflie-420). The FMA dataset is a large-scale, open-source dataset of music tracks, designed for music information retrieval and machine learning tasks.
## Dataset Description
The Free Music Archive (FMA) is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata. This particular version focuses on the "small" subset of the FMA, which includes:
- 8,000 tracks of 30 seconds each
- 8 balanced genres (Electronic, Experimental, Folk, Hip-Hop, Instrumental, International, Pop, Rock)
- Audio files in 128k MP3 format
- Comprehensive metadata for each track
## Contents
This dataset provides:
1. Audio files: 30-second MP3 clips of music tracks
2. Metadata: Information about each track, including:
- Track ID
- Title
- Artist
- Genre
- Additional features (e.g., acoustic features, music analysis data)
## Data Files
To use this dataset, you need to manually download and place the following files in the repository:
1. `fma_small.zip`: Contains the audio files
2. `fma_metadata.zip`: Contains the metadata for the tracks
After downloading, extract these files and ensure the following directory structure:
```
fma_dataset/
βββ fma_small/
β βββ 000/
β βββ 001/
β βββ ...
βββ fma_metadata/
βββ tracks.csv
βββ genres.csv
βββ features.csv
```
## Usage
To use this dataset in your Hugging Face projects:
```python
from datasets import load_dataset
dataset = load_dataset("dragunflie-420/fma")
# Access the first example
first_example = dataset['train'][0]
print(first_example['title'], first_example['artist'], first_example['genre'])
# Play the audio (if in a notebook environment)
from IPython.display import Audio
Audio(first_example['audio']['array'], rate=first_example['audio']['sampling_rate'])
```
[... rest of the README content remains the same ...]
---
language:
- en
license: cc-by-4.0
pretty_name: Free Music Archive (FMA) Dataset
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- audio-classification
task_ids:
- multi-class-classification
---
# Free Music Archive (FMA) Dataset
## Overview
This repository contains the Free Music Archive (FMA) dataset, curated and made available on Hugging Face by [dragunflie-420](https://huggingface.co/dragunflie-420). The FMA dataset is a large-scale, open-source dataset of music tracks, designed for music information retrieval and machine learning tasks.
[... rest of the README content remains the same ...] Free Music Archive (FMA) Dataset
## Dataset Description
The Free Music Archive (FMA) is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata. This particular version focuses on the "small" subset of the FMA, which includes:
- 8,000 tracks of 30 seconds each
- 8 balanced genres (Electronic, Experimental, Folk, Hip-Hop, Instrumental, International, Pop, Rock)
- Audio files in 128k MP3 format
- Comprehensive metadata for each track
## Contents
This dataset provides:
1. Audio files: 30-second MP3 clips of music tracks
2. Metadata: Information about each track, including:
- Track ID
- Title
- Artist
- Genre
- Additional features (e.g., acoustic features, music analysis data)
## Usage
To use this dataset in your Hugging Face projects:
```python
from datasets import load_dataset
dataset = load_dataset("dragunflie-420/fma")
# Access the first example
first_example = dataset['train'][0]
print(first_example['title'], first_example['artist'], first_example['genre'])
# Play the audio (if in a notebook environment)
from IPython.display import Audio
Audio(first_example['audio']['array'], rate=first_example['audio']['sampling_rate'])
```
## Dataset Structure
Each example in the dataset contains:
- `track_id`: Unique identifier for the track
- `title`: Title of the track
- `artist`: Name of the artist
- `genre`: Top-level genre classification
- `audio`: Audio file in the format compatible with Hugging Face's Audio feature
## Applications
This dataset is suitable for various music information retrieval and machine learning tasks, including:
- Music genre classification
- Artist identification
- Music recommendation systems
- Audio feature extraction and analysis
- Music generation and style transfer
## Citation
If you use this dataset in your research, please cite the original FMA paper:
```
@inproceedings{defferrard2016fma,
title={FMA: A Dataset for Music Analysis},
author={Defferrard, Micha{\"e}l and Ben |