File size: 4,982 Bytes
1153882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee53fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e973f45
 
 
 
 
0ee53fa
 
 
e973f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
---
language:
- en
license: cc-by-4.0
pretty_name: Free Music Archive (FMA) Dataset
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- audio-classification
task_ids:
- multi-class-classification
---

# Free Music Archive (FMA) Dataset

## Overview

This repository contains the Free Music Archive (FMA) dataset, curated and made available on Hugging Face by [dragunflie-420](https://huggingface.co/dragunflie-420). The FMA dataset is a large-scale, open-source dataset of music tracks, designed for music information retrieval and machine learning tasks.

## Dataset Description

The Free Music Archive (FMA) is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata. This particular version focuses on the "small" subset of the FMA, which includes:

- 8,000 tracks of 30 seconds each
- 8 balanced genres (Electronic, Experimental, Folk, Hip-Hop, Instrumental, International, Pop, Rock)
- Audio files in 128k MP3 format
- Comprehensive metadata for each track

## Contents

This dataset provides:

1. Audio files: 30-second MP3 clips of music tracks
2. Metadata: Information about each track, including:
   - Track ID
   - Title
   - Artist
   - Genre
   - Additional features (e.g., acoustic features, music analysis data)

## Data Files

To use this dataset, you need to manually download and place the following files in the repository:

1. `fma_small.zip`: Contains the audio files
2. `fma_metadata.zip`: Contains the metadata for the tracks

After downloading, extract these files and ensure the following directory structure:

```
fma_dataset/
β”œβ”€β”€ fma_small/
β”‚   β”œβ”€β”€ 000/
β”‚   β”œβ”€β”€ 001/
β”‚   └── ...
└── fma_metadata/
    β”œβ”€β”€ tracks.csv
    β”œβ”€β”€ genres.csv
    └── features.csv
```

## Usage

To use this dataset in your Hugging Face projects:

```python
from datasets import load_dataset

dataset = load_dataset("dragunflie-420/fma")

# Access the first example
first_example = dataset['train'][0]
print(first_example['title'], first_example['artist'], first_example['genre'])

# Play the audio (if in a notebook environment)
from IPython.display import Audio
Audio(first_example['audio']['array'], rate=first_example['audio']['sampling_rate'])
```

[... rest of the README content remains the same ...]





---
language:
- en
license: cc-by-4.0
pretty_name: Free Music Archive (FMA) Dataset
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- audio-classification
task_ids:
- multi-class-classification
---

# Free Music Archive (FMA) Dataset

## Overview

This repository contains the Free Music Archive (FMA) dataset, curated and made available on Hugging Face by [dragunflie-420](https://huggingface.co/dragunflie-420). The FMA dataset is a large-scale, open-source dataset of music tracks, designed for music information retrieval and machine learning tasks.

[... rest of the README content remains the same ...] Free Music Archive (FMA) Dataset

## Dataset Description

The Free Music Archive (FMA) is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata. This particular version focuses on the "small" subset of the FMA, which includes:

- 8,000 tracks of 30 seconds each
- 8 balanced genres (Electronic, Experimental, Folk, Hip-Hop, Instrumental, International, Pop, Rock)
- Audio files in 128k MP3 format
- Comprehensive metadata for each track

## Contents

This dataset provides:

1. Audio files: 30-second MP3 clips of music tracks
2. Metadata: Information about each track, including:
   - Track ID
   - Title
   - Artist
   - Genre
   - Additional features (e.g., acoustic features, music analysis data)

## Usage

To use this dataset in your Hugging Face projects:

```python
from datasets import load_dataset

dataset = load_dataset("dragunflie-420/fma")

# Access the first example
first_example = dataset['train'][0]
print(first_example['title'], first_example['artist'], first_example['genre'])

# Play the audio (if in a notebook environment)
from IPython.display import Audio
Audio(first_example['audio']['array'], rate=first_example['audio']['sampling_rate'])
```

## Dataset Structure

Each example in the dataset contains:

- `track_id`: Unique identifier for the track
- `title`: Title of the track
- `artist`: Name of the artist
- `genre`: Top-level genre classification
- `audio`: Audio file in the format compatible with Hugging Face's Audio feature

## Applications

This dataset is suitable for various music information retrieval and machine learning tasks, including:

- Music genre classification
- Artist identification
- Music recommendation systems
- Audio feature extraction and analysis
- Music generation and style transfer

## Citation

If you use this dataset in your research, please cite the original FMA paper:

```
@inproceedings{defferrard2016fma,
  title={FMA: A Dataset for Music Analysis},
  author={Defferrard, Micha{\"e}l and Ben