Datasets:
Tasks:
Audio Classification
Sub-tasks:
multi-class-classification
Languages:
English
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import pandas as pd | |
import numpy as np | |
import datasets | |
_CITATION = """ | |
@inproceedings{defferrard2016fma, | |
title={FMA: A Dataset for Music Analysis}, | |
author={Defferrard, Micha{\"e}l and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier}, | |
booktitle={18th International Society for Music Information Retrieval Conference}, | |
year={2017}, | |
} | |
""" | |
_DESCRIPTION = """ | |
The Free Music Archive (FMA) is an open and easily accessible dataset of music collections. | |
""" | |
_HOMEPAGE = "https://github.com/mdeff/fma" | |
_LICENSE = "Creative Commons Attribution 4.0 International License" | |
_URLs = { | |
"small": "https://os.unil.cloud.switch.ch/fma/fma_small.zip", | |
"metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip", | |
} | |
class FMADataset(datasets.GeneratorBasedBuilder): | |
"""FMA small dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="small", version=VERSION, description="The small subset of FMA dataset"), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"track_id": datasets.Value("int32"), | |
"title": datasets.Value("string"), | |
"artist": datasets.Value("string"), | |
"genre": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=44100), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["small"], "fma_small"), | |
"metadata_path": os.path.join(data_dir["metadata"], "fma_metadata"), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, metadata_path): | |
"""Yields examples.""" | |
# Load metadata | |
tracks = pd.read_csv(os.path.join(metadata_path, "tracks.csv"), index_col=0, header=[0, 1]) | |
# Iterate through audio files | |
for root, _, files in os.walk(filepath): | |
for file in files: | |
if file.endswith('.mp3'): | |
track_id = int(file.split('.')[0]) | |
audio_path = os.path.join(root, file) | |
# Get metadata | |
title = tracks.loc[track_id, ('track', 'title')] | |
artist = tracks.loc[track_id, ('artist', 'name')] | |
genre = tracks.loc[track_id, ('track', 'genre_top')] | |
yield track_id, { | |
"track_id": track_id, | |
"title": title, | |
"artist": artist, | |
"genre": genre, | |
"audio": audio_path, | |
} | |
def manual_download_instructions(self): | |
return """ | |
To use the FMA dataset, you need to download it manually. Please follow these steps: | |
1. Go to https://github.com/mdeff/fma | |
2. Download the 'fma_small.zip' and 'fma_metadata.zip' files | |
3. Extract both zip files | |
4. Copy the 'fma_small' folder and the 'fma_metadata' folder to the root of this dataset repository | |
Once you have completed these steps, the dataset will be ready to use. | |
""" coding=utf-8 | |
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import pandas as pd | |
import numpy as np | |
import datasets | |
_CITATION = """ | |
@inproceedings{defferrard2016fma, | |
title={FMA: A Dataset for Music Analysis}, | |
author={Defferrard, Micha{\"e}l and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier}, | |
booktitle={18th International Society for Music Information Retrieval Conference}, | |
year={2017}, | |
} | |
""" | |
_DESCRIPTION = """ | |
The Free Music Archive (FMA) is an open and easily accessible dataset of music collections. | |
""" | |
_HOMEPAGE = "https://github.com/mdeff/fma" | |
_LICENSE = "Creative Commons Attribution 4.0 International License" | |
_URLs = { | |
"small": "https://os.unil.cloud.switch.ch/fma/fma_small.zip", | |
"metadata": "https://os.unil.cloud.switch.ch/fma/fma_metadata.zip", | |
} | |
class FMADataset(datasets.GeneratorBasedBuilder): | |
"""FMA small dataset.""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="small", version=VERSION, description="The small subset of FMA dataset"), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"track_id": datasets.Value("int32"), | |
"title": datasets.Value("string"), | |
"artist": datasets.Value("string"), | |
"genre": datasets.Value("string"), | |
"audio": datasets.Audio(sampling_rate=44100), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir["small"], "fma_small"), | |
"metadata_path": os.path.join(data_dir["metadata"], "fma_metadata"), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, metadata_path): | |
"""Yields examples.""" | |
# Load metadata | |
tracks = pd.read_csv(os.path.join(metadata_path, "tracks.csv"), index_col=0, header=[0, 1]) | |
# Iterate through audio files | |
for root, _, files in os.walk(filepath): | |
for file in files: | |
if file.endswith('.mp3'): | |
track_id = int(file.split('.')[0]) | |
audio_path = os.path.join(root, file) | |
# Get metadata | |
title = tracks.loc[track_id, ('track', 'title')] | |
artist = tracks.loc[track_id, ('artist', 'name')] | |
genre = tracks.loc[track_id, ('track', 'genre_top')] | |
yield track_id, { | |
"track_id": track_id, | |
"title": title, | |
"artist": artist, | |
"genre": genre, | |
"audio": audio_path, | |
} |