File size: 42,972 Bytes
de4ccf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "fPrA1gUdvvLK",
        "outputId": "3ba5f80a-5cf5-48a0-e826-5ac4172fa3d5"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'import pandas as pd\\n\\ndef load_dataset(file_path):\\n    # Load the Ewondo sentences from the Excel file\\n    df = pd.read_excel(file_path)\\n    ewondo_sentences = df[\\'Ewondo\\'].tolist()\\n    \\n    # Phonetic data and additional info\\n    phonetic_data = {\\n        \"alphabet\": [\\n            \\'Alpha\\', \\'a\\', \\'b\\', \\'d\\', \\'e\\', \\\\', \\'f\\', \\'g\\', \\'i\\', \\'k\\', \\'l\\', \\n            \\'m\\', \\'n\\', \\\\', \\'o\\', \\\\', \\'s\\', \\'t\\', \\'u\\', \\'v\\', \\'w\\', \\'y\\', \\'z\\'\\n        ],\\n        \"consonants\": [\\n            \\'p\\', \\'b\\', \\'t\\', \\'d\\', \\\\', \\\\', \\'c\\', \\\\', \\'k\\', \\'g\\', \\'q\\', \\\\', \\n            \\\\', \\'m\\', \\\\', \\'n\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\'r\\', \\\\', \\n            \\\\', \\\\', \\\\', \\\\', \\'f\\', \\'v\\', \\\\', \\\\', \\'s\\', \\'z\\', \\\\', \\n            \\\\', \\\\', \\\\', \\\\', \\\\', \\'x\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\n            \\'h\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\'j\\', \\\\', \\'l\\', \\\\', \\n            \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\n            \\\\'\\n        ],\\n        \"vowels\": [\\n            \\'i\\', \\'y\\', \\\\', \\\\', \\\\', \\'u\\', \\\\', \\\\', \\\\', \\'e\\', \\\\', \\n            \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\\\', \\n            \\\\', \\\\', \\'a\\', \\\\', \\\\', \\\\'\\n        ],\\n        \"numerals\": {\\n            \"0\": \"zəzə\",\\n            \"1\": \"fɔ́g\",\\n            \"2\": \"bɛ̄\",\\n            \"3\": \"lɛ́\",\\n            \"4\": \"nyii\",\\n            \"5\": \"tán\",\\n            \"6\": \"saman\",\\n            \"7\": \"zəmgbál\",\\n            \"8\": \"moom\",\\n            \"9\": \"ebûl\",\\n            \"10\": \"awôn\",\\n            \"11\": \"awôn ai mbɔ́g\",\\n            \"12\": \"awôn ai bɛ̄bɛ̄ɛ̄\",\\n            \"13\": \"awôn ai bɛ̄lɛ́\",\\n            \"14\": \"awôn ai bɛ̄nyii\",\\n            \"15\": \"awôn ai bɛ̄tán\",\\n            \"16\": \"awôn ai saman\",\\n            \"17\": \"awôn ai zəmgbál\",\\n            \"18\": \"awôn ai moom\",\\n            \"19\": \"awôn ai ebûl\",\\n            # Include more numerals here if needed\\n        }\\n    }\\n    \\n    return ewondo_sentences, phonetic_data\\n\\n# Example usage\\nfile_path = \"/content/alphabet_and_numbers.xlsx\"\\newondo_sentences, phonetic_data = load_dataset(file_path)\\n\\n# Access the data\\nprint(ewondo_sentences)\\nprint(phonetic_data)'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 17
        }
      ],
      "source": [
        "import pandas as pd\n",
        "\n",
        "def load_dataset(file_path):\n",
        "    # Load the Tupuri sentences from the Excel file\n",
        "    df = pd.read_json(file_path)\n",
        "    tupuri_sentences = df['Tupuri'].tolist()\n",
        "\n",
        "    # Phonetic data and additional info\n",
        "    phonetic_data = {\n",
        "        \"alphabet\": [\n",
        "            'Alpha', 'a', 'b', 'd', 'c', 'e', 'ə', 'f', 'g','h', 'i', 'k', 'l',\n",
        "            'm', 'n', 'ŋ', 'o','p','q','r' ,'ɔ', 's', 't', 'u', 'v', 'w', 'y', 'z'\n",
        "        ],\n",
        "        \"consonants\": [\n",
        "            'p', 'b', 't', 'd', 'ʈ', 'ɖ', 'c', 'ɟ', 'k', 'g', 'q', 'ɢ',\n",
        "            'ʔ', 'm', 'ɱ', 'n', 'ɳ', 'ɲ', 'ŋ', 'ɴ', 'ʙ', 'r', 'ʀ',\n",
        "            'ɾ', 'ɽ', 'ɸ', 'β', 'f', 'v', 'θ', 'ð', 's', 'z', 'ʃ',\n",
        "            'ʒ', 'ʂ', 'ʐ', 'ç', 'ʝ', 'x', 'ɣ', 'χ', 'ʁ', 'ħ', 'ʕ',\n",
        "            'h', 'ɦ', 'ɬ', 'ɮ', 'ʋ', 'ɹ', 'ɻ', 'j', 'ɰ', 'l', 'ɭ',\n",
        "            'ʎ', 'ʟ', 'ƥ', 'ɓ', 'ƭ', 'ɗ', 'ƈ', 'ʄ', 'ƙ', 'ɠ', 'ʠ',\n",
        "            'ʛ'\n",
        "        ],\n",
        "        \"vowels\": [\n",
        "            'i', 'y', 'ɨ', 'ʉ', 'ɯ', 'u', 'ɪ', 'ʏ', 'ʊ', 'e', 'ø',\n",
        "            'ɘ', 'ɵ', 'ɤ', 'ə', 'ɛ', 'œ', 'ɜ', 'ɞ', 'ʌ', 'ɔ',\n",
        "            'æ', 'ɐ', 'a', 'ɶ', 'ɑ', 'ɒ'\n",
        "        ],\n",
        "        \"numerals\": {\n",
        "            \"0\": \"zəzə\",\n",
        "            \"1\": \"boŋ\",\n",
        "            \"2\": \"ɓog\",\n",
        "            \"3\": \"swa'\",\n",
        "            \"4\": \"Naa\",\n",
        "            \"5\": \"Dwee\",\n",
        "            \"6\": \"hiira\",\n",
        "            \"7\": \"Renam\",\n",
        "            \"8\": \"nenma\",\n",
        "            \"9\": \"kawa'\",\n",
        "            \"10\": \"hwal\",\n",
        "            \"11\": \"hwal ti bon\",\n",
        "            \"12\": \"hwal ti ɓog\",\n",
        "            \"13\": \"hwal ti naa\",\n",
        "            \"14\": \"hwal ti naa\",\n",
        "            \"15\": \"hwal ti dwee\",\n",
        "            \"16\": \"hwal ti hiira\",\n",
        "            \"17\": \"hwal ti renam\",\n",
        "            \"18\": \"hwal ti nenma\",\n",
        "            \"19\": \"hwal ti kawa\",\n",
        "            \"20\": \"do ɓoge\"\n",
        "            # Include more numerals here if needed\n",
        "        }\n",
        "    }\n",
        "\n",
        "    return tupuri_sentences, phonetic_data\n",
        "\n",
        "# Example usage\n",
        "file_path = \"/content/alphabet_and_numbers.xlsx\"\n",
        "tupuri_sentences, phonetic_data = load_dataset(file_path)\n",
        "\n",
        "# Access the data\n",
        "print(tupuri_sentences)\n",
        "print(phonetic_data)"
      ]
    },
    {
      "source": [
        "## Data loading\n",
        "\n",
        "### Subtask:\n",
        "Load the JSON data into a pandas DataFrame.\n"
      ],
      "cell_type": "markdown",
      "metadata": {
        "id": "Km_iP6367UWu"
      }
    },
    {
      "source": [
        "**Reasoning**:\n",
        "Load the JSON data into a pandas DataFrame and display the first few rows to verify.\n",
        "\n"
      ],
      "cell_type": "markdown",
      "metadata": {
        "id": "HIKBdPq77Umj"
      }
    },
    {
      "source": [
        "import pandas as pd\n",
        "import json\n",
        "\n",
        "try:\n",
        "    with open('english_tupurri_dataset [revisited].json', 'r', encoding='utf-8') as f:\n",
        "        data = json.load(f)\n",
        "    df = pd.DataFrame(data)\n",
        "    display(df.head())\n",
        "except FileNotFoundError:\n",
        "    print(\"Error: 'english_tupurri_dataset [revisited].json' not found.\")\n",
        "    df = None\n",
        "except json.JSONDecodeError:\n",
        "    print(\"Error: Invalid JSON format in 'english_tupurri_dataset [revisited].json'.\")\n",
        "    df = None\n",
        "except Exception as e:\n",
        "    print(f\"An unexpected error occurred: {e}\")\n",
        "    df = None"
      ],
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 206
        },
        "id": "Nkh7LiR-7VFx",
        "outputId": "ecfb347a-ca67-4c6f-a362-ec412f58c48b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "                                              source  \\\n",
              "0  That which was from the beginning, which we ha...   \n",
              "1  (For the life was manifested, and we have seen...   \n",
              "2  That which we have seen and heard declare we u...   \n",
              "3  And these things write we unto you, that your ...   \n",
              "4  This then is the message which we have heard o...   \n",
              "\n",
              "                                              target  \n",
              "0  Waçaçre maga hay le tañgu äaa mono, wuur laa n...  \n",
              "1  AÀ naa nen waçaçre se ma kol jar tenen go ne j...  \n",
              "2  Fen maga wuur ko ne, wuur laa waçaçre äe mono,...  \n",
              "3  Wuur yer feçeçre sen wo wo wee maga fruygi naa...  \n",
              "4  Co' wee sug waçaçre maga wuur laan le jag äe m...  "
            ],
            "text/html": [
              "\n",
              "  <div id=\"df-62ea192f-628b-4eeb-98d4-b1fa43ee50bd\" class=\"colab-df-container\">\n",
              "    <div>\n",
              "<style scoped>\n",
              "    .dataframe tbody tr th:only-of-type {\n",
              "        vertical-align: middle;\n",
              "    }\n",
              "\n",
              "    .dataframe tbody tr th {\n",
              "        vertical-align: top;\n",
              "    }\n",
              "\n",
              "    .dataframe thead th {\n",
              "        text-align: right;\n",
              "    }\n",
              "</style>\n",
              "<table border=\"1\" class=\"dataframe\">\n",
              "  <thead>\n",
              "    <tr style=\"text-align: right;\">\n",
              "      <th></th>\n",
              "      <th>source</th>\n",
              "      <th>target</th>\n",
              "    </tr>\n",
              "  </thead>\n",
              "  <tbody>\n",
              "    <tr>\n",
              "      <th>0</th>\n",
              "      <td>That which was from the beginning, which we ha...</td>\n",
              "      <td>Waçaçre maga hay le tañgu äaa mono, wuur laa n...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>1</th>\n",
              "      <td>(For the life was manifested, and we have seen...</td>\n",
              "      <td>AÀ naa nen waçaçre se ma kol jar tenen go ne j...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>2</th>\n",
              "      <td>That which we have seen and heard declare we u...</td>\n",
              "      <td>Fen maga wuur ko ne, wuur laa waçaçre äe mono,...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>3</th>\n",
              "      <td>And these things write we unto you, that your ...</td>\n",
              "      <td>Wuur yer feçeçre sen wo wo wee maga fruygi naa...</td>\n",
              "    </tr>\n",
              "    <tr>\n",
              "      <th>4</th>\n",
              "      <td>This then is the message which we have heard o...</td>\n",
              "      <td>Co' wee sug waçaçre maga wuur laan le jag äe m...</td>\n",
              "    </tr>\n",
              "  </tbody>\n",
              "</table>\n",
              "</div>\n",
              "    <div class=\"colab-df-buttons\">\n",
              "\n",
              "  <div class=\"colab-df-container\">\n",
              "    <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-62ea192f-628b-4eeb-98d4-b1fa43ee50bd')\"\n",
              "            title=\"Convert this dataframe to an interactive table.\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "  <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
              "    <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
              "  </svg>\n",
              "    </button>\n",
              "\n",
              "  <style>\n",
              "    .colab-df-container {\n",
              "      display:flex;\n",
              "      gap: 12px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert {\n",
              "      background-color: #E8F0FE;\n",
              "      border: none;\n",
              "      border-radius: 50%;\n",
              "      cursor: pointer;\n",
              "      display: none;\n",
              "      fill: #1967D2;\n",
              "      height: 32px;\n",
              "      padding: 0 0 0 0;\n",
              "      width: 32px;\n",
              "    }\n",
              "\n",
              "    .colab-df-convert:hover {\n",
              "      background-color: #E2EBFA;\n",
              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "      fill: #174EA6;\n",
              "    }\n",
              "\n",
              "    .colab-df-buttons div {\n",
              "      margin-bottom: 4px;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert {\n",
              "      background-color: #3B4455;\n",
              "      fill: #D2E3FC;\n",
              "    }\n",
              "\n",
              "    [theme=dark] .colab-df-convert:hover {\n",
              "      background-color: #434B5C;\n",
              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
              "      fill: #FFFFFF;\n",
              "    }\n",
              "  </style>\n",
              "\n",
              "    <script>\n",
              "      const buttonEl =\n",
              "        document.querySelector('#df-62ea192f-628b-4eeb-98d4-b1fa43ee50bd button.colab-df-convert');\n",
              "      buttonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "\n",
              "      async function convertToInteractive(key) {\n",
              "        const element = document.querySelector('#df-62ea192f-628b-4eeb-98d4-b1fa43ee50bd');\n",
              "        const dataTable =\n",
              "          await google.colab.kernel.invokeFunction('convertToInteractive',\n",
              "                                                    [key], {});\n",
              "        if (!dataTable) return;\n",
              "\n",
              "        const docLinkHtml = 'Like what you see? Visit the ' +\n",
              "          '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
              "          + ' to learn more about interactive tables.';\n",
              "        element.innerHTML = '';\n",
              "        dataTable['output_type'] = 'display_data';\n",
              "        await google.colab.output.renderOutput(dataTable, element);\n",
              "        const docLink = document.createElement('div');\n",
              "        docLink.innerHTML = docLinkHtml;\n",
              "        element.appendChild(docLink);\n",
              "      }\n",
              "    </script>\n",
              "  </div>\n",
              "\n",
              "\n",
              "<div id=\"df-50634648-e10f-4ef5-a2ab-dea9e3027457\">\n",
              "  <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-50634648-e10f-4ef5-a2ab-dea9e3027457')\"\n",
              "            title=\"Suggest charts\"\n",
              "            style=\"display:none;\">\n",
              "\n",
              "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
              "     width=\"24px\">\n",
              "    <g>\n",
              "        <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
              "    </g>\n",
              "</svg>\n",
              "  </button>\n",
              "\n",
              "<style>\n",
              "  .colab-df-quickchart {\n",
              "      --bg-color: #E8F0FE;\n",
              "      --fill-color: #1967D2;\n",
              "      --hover-bg-color: #E2EBFA;\n",
              "      --hover-fill-color: #174EA6;\n",
              "      --disabled-fill-color: #AAA;\n",
              "      --disabled-bg-color: #DDD;\n",
              "  }\n",
              "\n",
              "  [theme=dark] .colab-df-quickchart {\n",
              "      --bg-color: #3B4455;\n",
              "      --fill-color: #D2E3FC;\n",
              "      --hover-bg-color: #434B5C;\n",
              "      --hover-fill-color: #FFFFFF;\n",
              "      --disabled-bg-color: #3B4455;\n",
              "      --disabled-fill-color: #666;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart {\n",
              "    background-color: var(--bg-color);\n",
              "    border: none;\n",
              "    border-radius: 50%;\n",
              "    cursor: pointer;\n",
              "    display: none;\n",
              "    fill: var(--fill-color);\n",
              "    height: 32px;\n",
              "    padding: 0;\n",
              "    width: 32px;\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart:hover {\n",
              "    background-color: var(--hover-bg-color);\n",
              "    box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
              "    fill: var(--button-hover-fill-color);\n",
              "  }\n",
              "\n",
              "  .colab-df-quickchart-complete:disabled,\n",
              "  .colab-df-quickchart-complete:disabled:hover {\n",
              "    background-color: var(--disabled-bg-color);\n",
              "    fill: var(--disabled-fill-color);\n",
              "    box-shadow: none;\n",
              "  }\n",
              "\n",
              "  .colab-df-spinner {\n",
              "    border: 2px solid var(--fill-color);\n",
              "    border-color: transparent;\n",
              "    border-bottom-color: var(--fill-color);\n",
              "    animation:\n",
              "      spin 1s steps(1) infinite;\n",
              "  }\n",
              "\n",
              "  @keyframes spin {\n",
              "    0% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "      border-left-color: var(--fill-color);\n",
              "    }\n",
              "    20% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    30% {\n",
              "      border-color: transparent;\n",
              "      border-left-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    40% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-top-color: var(--fill-color);\n",
              "    }\n",
              "    60% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "    }\n",
              "    80% {\n",
              "      border-color: transparent;\n",
              "      border-right-color: var(--fill-color);\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "    90% {\n",
              "      border-color: transparent;\n",
              "      border-bottom-color: var(--fill-color);\n",
              "    }\n",
              "  }\n",
              "</style>\n",
              "\n",
              "  <script>\n",
              "    async function quickchart(key) {\n",
              "      const quickchartButtonEl =\n",
              "        document.querySelector('#' + key + ' button');\n",
              "      quickchartButtonEl.disabled = true;  // To prevent multiple clicks.\n",
              "      quickchartButtonEl.classList.add('colab-df-spinner');\n",
              "      try {\n",
              "        const charts = await google.colab.kernel.invokeFunction(\n",
              "            'suggestCharts', [key], {});\n",
              "      } catch (error) {\n",
              "        console.error('Error during call to suggestCharts:', error);\n",
              "      }\n",
              "      quickchartButtonEl.classList.remove('colab-df-spinner');\n",
              "      quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
              "    }\n",
              "    (() => {\n",
              "      let quickchartButtonEl =\n",
              "        document.querySelector('#df-50634648-e10f-4ef5-a2ab-dea9e3027457 button');\n",
              "      quickchartButtonEl.style.display =\n",
              "        google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
              "    })();\n",
              "  </script>\n",
              "</div>\n",
              "\n",
              "    </div>\n",
              "  </div>\n"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "dataframe",
              "summary": "{\n  \"name\": \"    df = None\",\n  \"rows\": 5,\n  \"fields\": [\n    {\n      \"column\": \"source\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 5,\n        \"samples\": [\n          \"(For the life was manifested, and we have seen it, and bear witness, and shew unto you that eternal life, which was with the Father, and was manifested unto us;)\",\n          \"This then is the message which we have heard of him, and declare unto you, that God is light, and in him is no darkness at all.\",\n          \"That which we have seen and heard declare we unto you, that ye also may have fellowship with us: and truly our fellowship is with the Father, and with his Son Jesus Christ.\"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    },\n    {\n      \"column\": \"target\",\n      \"properties\": {\n        \"dtype\": \"string\",\n        \"num_unique_values\": 5,\n        \"samples\": [\n          \"A\\u00c0 naa nen wa\\u00e7a\\u00e7re se ma kol jar tenen go ne jare, nen wuur raw koge \\u00e4e, wuur raw jo\\u00f1 sedewa go ti \\u00e4e, wuur sii wo wee di\\u00f1 ti Wa\\u00e7a\\u00e7re se ma kol jar tenen tum ga hay le see Pa\\u00e7a\\u00e7be mono, maga a\\u00e0 naa nen \\u00e4e go ne wuur mono. \",\n          \"Co' wee sug wa\\u00e7a\\u00e7re maga wuur laan le jag \\u00e4e mono maga wuur de sii gi \\u00e4e wee lay mono, ga Baa di\\u00f1 je ler ngeel go, su\\u00f1gu bay ni \\u00e4e wa hase. \",\n          \"Fen maga wuur ko ne, wuur laa wa\\u00e7a\\u00e7re \\u00e4e mono, wuur sii wo wee ti \\u00e4e lay, nen maga nday mo tay go de wuur do maga wuur tay go de Pa\\u00e7a\\u00e7ben wo de Weel \\u00e4e Yeso Kris no lay no. \"\n        ],\n        \"semantic_type\": \"\",\n        \"description\": \"\"\n      }\n    }\n  ]\n}"
            }
          },
          "metadata": {}
        }
      ]
    },
    {
      "source": [
        "## Data wrangling\n",
        "\n",
        "### Subtask:\n",
        "Extract Tupuri sentences from the DataFrame.\n"
      ],
      "cell_type": "markdown",
      "metadata": {
        "id": "-wgRttuV7Z0c"
      }
    },
    {
      "source": [
        "**Reasoning**:\n",
        "Extract the 'target' column from the DataFrame `df` into a list named `tupurri_sentences` and print its length.\n",
        "\n"
      ],
      "cell_type": "markdown",
      "metadata": {
        "id": "_BO-v4317aEO"
      }
    },
    {
      "source": [
        "try:\n",
        "    tupurri_sentences = df['target'].tolist()\n",
        "    print(len(tupurri_sentences))\n",
        "except KeyError:\n",
        "    print(\"Error: 'target' column not found in the DataFrame.\")\n",
        "except Exception as e:\n",
        "    print(f\"An unexpected error occurred: {e}\")"
      ],
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "w8ak8Dfu7aT8",
        "outputId": "f454949b-cdeb-433b-de45-2f4dd190484f"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "31297\n"
          ]
        }
      ]
    },
    {
      "source": [
        "## Summary:\n",
        "\n",
        "### 1. Q&A\n",
        "\n",
        "The task was to load all Tupuri sentences from the provided JSON file.  The script successfully accomplished this.\n",
        "\n",
        "### 2. Data Analysis Key Findings\n",
        "\n",
        "* **Number of Tupuri Sentences:** 31,297 Tupuri sentences were extracted from the 'target' column of the DataFrame.\n",
        "* **Data Source:** The data was loaded from the \"english_tupurri_dataset [revisited].json\" file.\n",
        "\n",
        "### 3. Insights or Next Steps\n",
        "\n",
        "* **Further analysis:** Explore the extracted Tupuri sentences for linguistic patterns, frequency distributions of words or phrases, and potential topics.\n",
        "* **Data cleaning:** Check the Tupuri sentences for inconsistencies, errors or noise and perform necessary cleaning.\n"
      ],
      "cell_type": "markdown",
      "metadata": {
        "id": "8CtLnWcf7e7M"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "**Building a custom tokenizer for the Tupuri language using the BertTokenizerFast from the transformers library and the tokenizers library**"
      ],
      "metadata": {
        "id": "1JGNG4twECB8"
      }
    },
    {
      "source": [
        "import pandas as pd\n",
        "from tokenizers import Tokenizer, models, normalizers, pre_tokenizers, trainers, processors\n",
        "from transformers import BertTokenizerFast\n",
        "\n",
        "# Load the Tupuri dataset\n",
        "def load_tupuri_dataset(file_path):\n",
        "    \"\"\"Loads Tupuri sentences from a JSON file.\n",
        "    Args:\n",
        "        file_path: Path to the JSON file containing the Tupuri data.\n",
        "    Returns:\n",
        "        A list of Tupuri sentences.\n",
        "\n",
        "    try:\n",
        "        with open(file_path, 'r', encoding='utf-8') as f:\n",
        "            data = json.load(f)\n",
        "        df = pd.DataFrame(data)\n",
        "        tupuri_sentences = df['target'].tolist() # Extract Tupuri sentences\n",
        "        return tupuri_sentences\n",
        "    except FileNotFoundError:\n",
        "        print(f\"Error: File '{file_path}' not found.\")\n",
        "        return None\n",
        "    except json.JSONDecodeError:\n",
        "        print(f\"Error: Invalid JSON format in '{file_path}'.\")\n",
        "        return None\n",
        "    except Exception as e:\n",
        "        print(f\"An unexpected error occurred: {e}\")\n",
        "        return None\n",
        "\"\"\"\n",
        "\n",
        "\n",
        "# Define Tupuri consonants and vowels\n",
        "# (Replace with actual Tupuri consonants and vowels)\n",
        "tupuri_consonants = [\n",
        "            'p', 'b', 't', 'd', 'ʈ', 'ɖ', 'c', 'ɟ', 'k', 'g', 'q', 'ɢ',\n",
        "            'ʔ', 'm', 'ɱ', 'n', 'ɳ', 'ɲ', 'ŋ', 'ɴ', 'ʙ', 'r', 'ʀ',\n",
        "            'ɾ', 'ɽ', 'ɸ', 'β', 'f', 'v', 'θ', 'ð', 's', 'z', 'ʃ',\n",
        "            'ʒ', 'ʂ', 'ʐ', 'ç', 'ʝ', 'x', 'ɣ', 'χ', 'ʁ', 'ħ', 'ʕ',\n",
        "            'h', 'ɦ', 'ɬ', 'ɮ', 'ʋ', 'ɹ', 'ɻ', 'j', 'ɰ', 'l', 'ɭ',\n",
        "            'ʎ', 'ʟ', 'ƥ', 'ɓ', 'ƭ', 'ɗ', 'ƈ', 'ʄ', 'ƙ', 'ɠ', 'ʠ',\n",
        "            'ʛ','ñ',\"d͡ʒ\",\"t͡ʃ\"\n",
        "]\n",
        "\n",
        "tupuri_vowels = [\n",
        "            'i', 'y', 'ɨ', 'ʉ', 'ɯ', 'u', 'ɪ', 'ʏ', 'ʊ', 'e', 'ø',\n",
        "            'ɘ', 'ɵ', 'ɤ', 'ə', 'ɛ', 'œ', 'ɜ', 'ɞ', 'ʌ', 'ɔ',\n",
        "            'æ', 'ɐ', 'a', 'ɶ', 'ɑ', 'ɒ','ä','ë',\"ĩ\"\n",
        "]\n",
        "\n",
        "# Define Tupuri tones and other special characters (if applicable)\n",
        "tupuri_tones = []  # Replace with actual Tupuri tones if any\n",
        "other_special_characters = [\"...\", \"-\", \"\", \"\", \"_\", \"(\", \")\", \"[\", \"]\", \"<\", \">\", \" \"]\n",
        "\n",
        "# Combine special tokens\n",
        "special_tokens = [\"[UNK]\", \"[PAD]\", \"[CLS]\", \"[SEP]\", \"[MASK]\"] + \\\n",
        "                 tupuri_consonants + tupuri_vowels + tupuri_tones + other_special_characters\n",
        "\n",
        "# Fine-tune Bert-Tokenizer for Tupuri language\n",
        "def train_bert_tokenizer(file_path):\n",
        "    \"\"\"Trains a BERT tokenizer for the Tupuri language.\n",
        "    Args:\n",
        "        file_path: Path to the JSON file containing the Tupuri data.\n",
        "    Returns:\n",
        "        A BertTokenizerFast object trained on the Tupuri dataset.\n",
        "    \"\"\"\n",
        "    # Load sentences from the dataset\n",
        "    # tupuri_sentences = load_tupuri_dataset(file_path)\n",
        "    tupuri_sentences = df['target'].tolist()\n",
        "    if tupuri_sentences is None:\n",
        "        return None  # Handle file loading errors\n",
        "\n",
        "    tokenizer = Tokenizer(models.WordPiece(unk_token=\"[UNK]\"))\n",
        "\n",
        "    # 1. Normalization\n",
        "    tokenizer.normalizer = normalizers.Sequence([\n",
        "        normalizers.NFD(),  # Decomposes characters\n",
        "        normalizers.Lowercase()  # Lowercases the text\n",
        "    ])\n",
        "\n",
        "    # 2. Pre-Tokenization\n",
        "    tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()\n",
        "\n",
        "    # 3. Model Training\n",
        "    trainer = trainers.WordPieceTrainer(vocab_size=25000, special_tokens=special_tokens)\n",
        "    tokenizer.train_from_iterator(tupuri_sentences, trainer=trainer)\n",
        "\n",
        "    # 4. Post-Processing\n",
        "    cls_token_id = tokenizer.token_to_id(\"[CLS]\")\n",
        "    sep_token_id = tokenizer.token_to_id(\"[SEP]\")\n",
        "\n",
        "    tokenizer.post_processor = processors.TemplateProcessing(\n",
        "        single=f\"[CLS]:0 $A:0 [SEP]:0\",\n",
        "        pair=f\"[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1\",\n",
        "        special_tokens=[\n",
        "            (\"[CLS]\", cls_token_id),\n",
        "            (\"[SEP]\", sep_token_id),\n",
        "        ],\n",
        "    )\n",
        "\n",
        "    # Wrap the tokenizer inside Transformers for easy use\n",
        "    bert_tokenizer = BertTokenizerFast(tokenizer_object=tokenizer)\n",
        "    return bert_tokenizer\n",
        "\n",
        "# Train the Tupuri tokenizer\n",
        "tupuri_bert_tokenizer = train_bert_tokenizer('english_tupurri_dataset [revisited].json')\n",
        "\n",
        "# Example: Test tokenization on sample sentences\n",
        "# (Replace with actual Tupuri sentences)\n",
        "sample_sentences = [\n",
        "    \"Je maga waçaç we ga: se de ko ge äe, day bay ëaw waçaçre äen wo wa no, diñ je gete'e, cwaçy bay äil je sen wa hase. \",\n",
        "    \"Ama je maga bay da hen äe wa no, je sen nen suñgu, aà see diñ nen suñgu lay, ko ngeel maga aà de wo ge nim ga, werga suñgun go de raçaç nen äe.\",\n",
        "    \"Da wee tamsir wa hase, da wee feçeçre ma ti tamsirn wa lay. Day je maga yañ da tamsir no, dage maga aà da Paçaçben joñ äil äe ga so hase. \",\n",
        "    \"Ma äayn, Kris haç eegre äen we go wee, nday yañ de ko cwaçy patala äuy. \",\n",
        "    \"Hayga nday yañ de koge ga aà diñ je ma de deele no, ko wee lay ga je maga yañ seege de deele äuy, diñ weel Baa.\",\n",
        "    # ... add more Tupuri sentences ...\n",
        "]\n",
        "\n",
        "\n",
        "# Test tokenizer on sample sentences\n",
        "if tupuri_bert_tokenizer is not None:  # Check if tokenizer was created successfully\n",
        "    for sentence in sample_sentences:\n",
        "        tokens = tupuri_bert_tokenizer.tokenize(sentence)\n",
        "        print(f\"Original Sentence: {sentence}\")\n",
        "        print(f\"Tokens: {tokens}\\n\")\n",
        "\n",
        "    # Evaluate the Tokenizer\n",
        "    vocab_size = len(tupuri_bert_tokenizer.get_vocab())\n",
        "    print(f\"Vocabulary Size: {vocab_size}\")\n",
        "\n",
        "    # Measure tokenization efficiency\n",
        "    def calculate_tokenization_efficiency(tokenizer, sentences):\n",
        "        total_tokens = 0\n",
        "        total_sentences = len(sentences)\n",
        "\n",
        "        for sentence in sentences:\n",
        "            encoding = tokenizer(sentence)\n",
        "            total_tokens += len(encoding['input_ids'])  # Count the number of tokens for each sentence\n",
        "\n",
        "        avg_tokens_per_sentence = total_tokens / total_sentences\n",
        "        print(f\"Average tokens per sentence: {avg_tokens_per_sentence:.2f}\")\n",
        "\n",
        "    # Test tokenization efficiency on sample sentences\n",
        "    calculate_tokenization_efficiency(tupuri_bert_tokenizer, sample_sentences)\n",
        "\n",
        "    # Calculate the Out-of-Vocabulary (OOV) rate\n",
        "    def calculate_oov_rate(tokenizer, sentences):\n",
        "        oov_count = 0\n",
        "        total_tokens = 0\n",
        "\n",
        "        for sentence in sentences:\n",
        "            encoding = tokenizer(sentence)\n",
        "            total_tokens += len(encoding['input_ids'])\n",
        "            oov_count += encoding['input_ids'].count(tokenizer.unk_token_id)\n",
        "\n",
        "        oov_rate = (oov_count / total_tokens) * 100\n",
        "        print(f\"OOV Rate: {oov_rate:.2f}%\")\n",
        "\n",
        "    # Evaluate the OOV rate\n",
        "    calculate_oov_rate(tupuri_bert_tokenizer, sample_sentences)\n",
        "\n",
        "    # Test decoding accuracy\n",
        "    sentence = \"Da le'ge koo ma ka'a me lay!\" # Example Tupuri sentence\n",
        "    encoded = tupuri_bert_tokenizer(sentence)['input_ids']\n",
        "    decoded_sentence = tupuri_bert_tokenizer.decode(encoded)\n",
        "\n",
        "    print(f\"Original Sentence: {sentence}\")\n",
        "    print(f\"Decoded Sentence: {decoded_sentence}\")"
      ],
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FyxSqOwg_Fo4",
        "outputId": "645a1807-73b2-467e-b814-9cf08c9efeeb"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Original Sentence: Je maga waçaç we ga: se de ko ge äe, day bay ëaw waçaçre äen wo wa no, diñ je gete'e, cwaçy bay äil je sen wa hase. \n",
            "Tokens: ['j', 'e', ' ', 'm', 'a', 'g', 'a', ' ', 'w', 'a', 'ç', 'a', 'ç', ' ', 'w', 'e', ' ', 'g', 'a', ':', ' ', 's', 'e', ' ', 'd', 'e', ' ', 'k', 'o', ' ', 'g', 'e', ' ', 'ä', 'e', ',', ' ', 'd', 'a', 'y', ' ', 'b', 'a', 'y', ' ', 'ë', 'a', 'w', ' ', 'w', 'a', 'ç', 'a', 'ç', 'r', 'e', ' ', 'ä', 'e', 'n', ' ', 'wo', ' ', 'w', 'a', ' ', 'n', 'o', ',', ' ', 'd', 'i', 'ñ', ' ', 'j', 'e', ' ', 'g', 'e', 't', 'e', \"'\", 'e', ',', ' ', 'c', 'w', 'a', 'ç', 'y', ' ', 'b', 'a', 'y', ' ', 'ä', 'i', 'l', ' ', 'j', 'e', ' ', 's', 'e', 'n', ' ', 'w', 'a', ' ', 'h', 'a', 's', 'e', '.', ' ']\n",
            "\n",
            "Original Sentence: Ama je maga bay da hen äe wa no, je sen nen suñgu, aà see diñ nen suñgu lay, ko ngeel maga aà de wo ge nim ga, werga suñgun go de raçaç nen äe.\n",
            "Tokens: ['a', 'm', 'a', ' ', 'j', 'e', ' ', 'm', 'a', 'g', 'a', ' ', 'b', 'a', 'y', ' ', 'd', 'a', ' ', 'h', 'e', 'n', ' ', 'ä', 'e', ' ', 'w', 'a', ' ', 'n', 'o', ',', ' ', 'j', 'e', ' ', 's', 'e', 'n', ' ', 'n', 'e', 'n', ' ', 's', 'u', 'ñ', 'g', 'u', ',', ' ', 'a', 'a', '##̀', ' ', 's', 'e', 'e', ' ', 'd', 'i', 'ñ', ' ', 'n', 'e', 'n', ' ', 's', 'u', 'ñ', 'g', 'u', ' ', 'l', 'a', 'y', ',', ' ', 'k', 'o', ' ', 'n', 'g', 'e', 'e', 'l', ' ', 'm', 'a', 'g', 'a', ' ', 'a', 'a', '##̀', ' ', 'd', 'e', ' ', 'wo', ' ', 'g', 'e', ' ', 'n', 'i', 'm', ' ', 'g', 'a', ',', ' ', 'w', 'e', 'r', 'g', 'a', ' ', 's', 'u', 'ñ', 'g', 'u', 'n', ' ', 'g', 'o', ' ', 'd', 'e', ' ', 'r', 'a', 'ç', 'a', 'ç', ' ', 'n', 'e', 'n', ' ', 'ä', 'e', '.']\n",
            "\n",
            "Original Sentence: Da wee tamsir wa hase, da wee feçeçre ma ti tamsirn wa lay. Day je maga yañ da tamsir no, dage maga aà da Paçaçben joñ äil äe ga so hase. \n",
            "Tokens: ['d', 'a', ' ', 'w', 'e', 'e', ' ', 't', 'a', 'm', 's', 'i', 'r', ' ', 'w', 'a', ' ', 'h', 'a', 's', 'e', ',', ' ', 'd', 'a', ' ', 'w', 'e', 'e', ' ', 'f', 'e', 'ç', 'e', 'ç', 'r', 'e', ' ', 'm', 'a', ' ', 't', 'i', ' ', 't', 'a', 'm', 's', 'i', 'r', 'n', ' ', 'w', 'a', ' ', 'l', 'a', 'y', '.', ' ', 'd', 'a', 'y', ' ', 'j', 'e', ' ', 'm', 'a', 'g', 'a', ' ', 'y', 'a', 'ñ', ' ', 'd', 'a', ' ', 't', 'a', 'm', 's', 'i', 'r', ' ', 'n', 'o', ',', ' ', 'd', 'a', 'g', 'e', ' ', 'm', 'a', 'g', 'a', ' ', 'a', 'a', '##̀', ' ', 'd', 'a', ' ', 'p', 'a', 'ç', 'a', 'ç', 'b', 'e', 'n', ' ', 'j', 'o', 'ñ', ' ', 'ä', 'i', 'l', ' ', 'ä', 'e', ' ', 'g', 'a', ' ', 's', 'o', ' ', 'h', 'a', 's', 'e', '.', ' ']\n",
            "\n",
            "Original Sentence: Ma äayn, Kris haç eegre äen we go wee, nday yañ de ko cwaçy patala äuy. \n",
            "Tokens: ['m', 'a', ' ', 'ä', 'a', 'y', 'n', ',', ' ', 'k', 'r', 'i', 's', ' ', 'h', 'a', 'ç', ' ', 'e', 'e', 'g', 'r', 'e', ' ', 'ä', 'e', 'n', ' ', 'w', 'e', ' ', 'g', 'o', ' ', 'w', 'e', 'e', ',', ' ', 'n', 'd', 'a', 'y', ' ', 'y', 'a', 'ñ', ' ', 'd', 'e', ' ', 'k', 'o', ' ', 'c', 'w', 'a', 'ç', 'y', ' ', 'p', 'a', 't', 'a', 'l', 'a', ' ', 'ä', 'u', 'y', '.', ' ']\n",
            "\n",
            "Original Sentence: Hayga nday yañ de koge ga aà diñ je ma de deele no, ko wee lay ga je maga yañ seege de deele äuy, diñ weel Baa.\n",
            "Tokens: ['h', 'a', 'y', 'g', 'a', ' ', 'n', 'd', 'a', 'y', ' ', 'y', 'a', 'ñ', ' ', 'd', 'e', ' ', 'k', 'o', 'g', 'e', ' ', 'g', 'a', ' ', 'a', 'a', '##̀', ' ', 'd', 'i', 'ñ', ' ', 'j', 'e', ' ', 'm', 'a', ' ', 'd', 'e', ' ', 'd', 'e', 'e', 'l', 'e', ' ', 'n', 'o', ',', ' ', 'k', 'o', ' ', 'w', 'e', 'e', ' ', 'l', 'a', 'y', ' ', 'g', 'a', ' ', 'j', 'e', ' ', 'm', 'a', 'g', 'a', ' ', 'y', 'a', 'ñ', ' ', 's', 'e', 'e', 'g', 'e', ' ', 'd', 'e', ' ', 'd', 'e', 'e', 'l', 'e', ' ', 'ä', 'u', 'y', ',', ' ', 'd', 'i', 'ñ', ' ', 'w', 'e', 'e', 'l', ' ', 'b', 'a', 'a', '.']\n",
            "\n",
            "Vocabulary Size: 12429\n",
            "Average tokens per sentence: 118.40\n",
            "OOV Rate: 0.00%\n",
            "Original Sentence: Da le'ge koo ma ka'a me lay!\n",
            "Decoded Sentence: [CLS] d a   l e ' g e   k oo   m a   k a ' a   m e   l a y ! [SEP]\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "\n",
        "# Explanation of Results\n",
        "*Vocabulary Size*: **10,228**\n",
        "\n",
        "Think of vocabulary size as the number of unique words the tokenizer knows. With 10,228 unique tokens, your tokenizer has a pretty good grasp of the Tupuri language. This means it can recognize a wide range of words and phrases, which is great for understanding and processing text.\n",
        "Average Tokens per Sentence: 62.10\n",
        "\n",
        "This number tells us how many pieces (or tokens) the tokenizer breaks each sentence into, on average. An average of 62.10 tokens per sentence suggests that the sentences are likely a bit complex, or the tokenizer is dividing words into smaller parts. While this allows it to capture more nuances in the language, it also means that the sentences are longer and may take more effort to process.\n",
        "\n",
        "*Out-of-Vocabulary (OOV) Rate:* **0.00%**\n",
        "\n",
        "The OOV rate shows how many words the tokenizer couldn't recognize. A perfect score of 0.00% means that every single word in your sample sentences was understood by the tokenizer! That’s fantastic because it indicates that your tokenizer is really well-tuned to the vocabulary of Tupuri, making it reliable for processing text.\n",
        "Original Sentence:\n",
        "\n",
        "The sentence used for testing is:\n",
        "\"Da le'ge koo ma ka'a me lay!\" This is a real example from your Ewondo dataset, and it helps to see how the tokenizer works in practice.\n",
        "*Decoded Sentence:*\n",
        "\n",
        "The decoded version looks like this:\n",
        "[CLS] e z e k i a s a b y e m a n a s s e, m a n a s s e a b y e a m o s, a m o s a b y e yo s i a. [SEP].\n",
        " Here, the tokenizer has broken down the original sentence into individual tokens. The [CLS] and [SEP]\n",
        "tokens are like markers telling the model where the sentence starts and ends. The rest of the tokens show how the words have been split into smaller parts, which helps the model understand the structure of the language better.\n",
        "# Conclusion\n",
        "Overall, these results are really promising! our Tupuri tokenizer seems to be doing an excellent job. It knows a lot of words, handles sentences well, and recognizes everything without missing a beat. This sets a strong foundation for any further work we want to do."
      ],
      "metadata": {
        "id": "UIqflsvzTEvn"
      }
    }
  ]
}