import os import json import shutil import datasets import tifffile import pandas as pd import numpy as np S2_MEAN = [0.05197577, 0.04783991, 0.04056812, 0.03163572, 0.02972606, 0.03457443, 0.03875053, 0.03436435, 0.0392113, 0.02358126, 0.01588816] S2_STD = [0.04725893, 0.04743808, 0.04699043, 0.04967381, 0.04946782, 0.06458357, 0.07594915, 0.07120246, 0.08251058, 0.05111466, 0.03524419] class MARIDADataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") DATA_URL = "https://huggingface.co/datasets/GFM-Bench/MARIDA/resolve/main/MARIDA.zip" metadata = { "s2c": { "bands": ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B8A", "B11", "B12"], "channel_wv": [442.7, 492.4, 559.8, 664.6, 704.1, 740.5, 782.8, 832.8, 864.7, 1613.7, 2202.4], "mean": S2_MEAN, "std": S2_STD, }, "s1": { "bands": None, "channel_wv": None, "mean": None, "std": None } } SIZE = HEIGHT = WIDTH = 96 spatial_resolution = 10 NUM_CLASSES = 11 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) mean = np.array(S2_MEAN).astype(np.float32) self.impute_nan = np.tile(mean, (self.SIZE, self.SIZE, 1)) def _info(self): metadata = self.metadata metadata['size'] = self.SIZE metadata['num_classes'] = self.NUM_CLASSES metadata['spatial_resolution'] = self.spatial_resolution return datasets.DatasetInfo( description=json.dumps(metadata), features=datasets.Features({ "optical": datasets.Array3D(shape=(11, self.HEIGHT, self.WIDTH), dtype="float32"), "label": datasets.Array2D(shape=(self.HEIGHT, self.WIDTH), dtype="int32"), "optical_channel_wv": datasets.Sequence(datasets.Value("float32")), "spatial_resolution": datasets.Value("int32"), }), ) def _split_generators(self, dl_manager): if isinstance(self.DATA_URL, list): downloaded_files = dl_manager.download(self.DATA_URL) combined_file = os.path.join(dl_manager.download_config.cache_dir, "combined.tar.gz") with open(combined_file, 'wb') as outfile: for part_file in downloaded_files: with open(part_file, 'rb') as infile: shutil.copyfileobj(infile, outfile) data_dir = dl_manager.extract(combined_file) os.remove(combined_file) else: data_dir = dl_manager.download_and_extract(self.DATA_URL) return [ datasets.SplitGenerator( name="train", gen_kwargs={ "split": 'train', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="val", gen_kwargs={ "split": 'val', "data_dir": data_dir, }, ), datasets.SplitGenerator( name="test", gen_kwargs={ "split": 'test', "data_dir": data_dir, }, ) ] def _generate_examples(self, split, data_dir): optical_channel_wv = self.metadata["s2c"]["channel_wv"] spatial_resolution = self.spatial_resolution data_dir = os.path.join(data_dir, "MARIDA") metadata = pd.read_csv(os.path.join(data_dir, "metadata.csv")) metadata = metadata[metadata["split"] == split].reset_index(drop=True) for index, row in metadata.iterrows(): optical_path = os.path.join(data_dir, row.optical_path) optical = self._read_image(optical_path).astype(np.float32) # CxHxW optical = np.transpose(optical, (1, 2, 0)) nan_mask = np.isnan(optical) optical[nan_mask] = self.impute_nan[nan_mask] optical = np.transpose(optical, (2, 0, 1)) label_path = os.path.join(data_dir, row.label_path) label = self._read_image(label_path).astype(np.int32) label[label==15] = 7 label[label==14] = 7 label[label==13] = 7 label[label==12] = 7 label -= 1 label[label==-1] = 255 sample = { "optical": optical, "optical_channel_wv": optical_channel_wv, "label": label, "spatial_resolution": spatial_resolution, } yield f"{index}", sample def _read_image(self, image_path): """Read tiff image from image_path Args: image_path: Image path to read from Return: image: C, H, W numpy array image """ image = tifffile.imread(image_path) if len(image.shape) == 3: image = np.transpose(image, (2, 0, 1)) return image