--- task_categories: - image-classification --- # So2Sat **So2Sat** is a local climate zone (LCZ) classification task consisting of images from Sentinel-1 and Sentinel-2. We only keep Sentinel-2 images which have 10 MSI bands in this dataset. In addition, we reserve 10% of the training set as the validation set, resulting in 31,713 training samples, 3,523 validation samples and 48,307 test samples. ## How to Use This Dataset ```python from datasets import load_dataset dataset = load_dataset("GFM-Bench/So2Sat") ``` Also, please see our [GFM-Bench](https://github.com/uiuctml/GFM-Bench) repository for more information about how to use the dataset! 🤗 ## Dataset Metadata The following metadata provides details about the Sentinel-2 imagery used in the dataset: - **Number of Sentinel-2 Bands**: 10 - **Sentinel-2 Bands**: B02 (**Blue**), B03 (**Green**), B04 (**Red**), B05 (**Vegetation red edge**), B06 (**Vegetation red edge**), B07 (**Vegetation red edge**), B08 (**NIR**), B8A (**Narrow NIR**), B11 (**SWIR**), B12 (**SWIR**) - **Image Resolution**: 32 x 32 pixels - **Spatial Resolution**: 10 meters - **Number of Classes**: 17 ## Dataset Splits The **So2Sat** dataset consists following splits: - **train**: 31,713 samples - **val**: 3,523 samples - **test**: 48,307 samples ## Dataset Features: The **So2Sat** dataset consists of following features: - **optical**: the Sentinel-2 image. - **label**: the classification label. - **optical_channel_wv**: the central wavelength of each Sentinel-2 bands. - **spatial_resolution**: the spatial resolution of images. ## Citation If you use the So2Sat dataset in your work, please cite the original paper: ``` @article{zhu2019so2sat, title={So2Sat LCZ42: A benchmark dataset for global local climate zones classification}, author={Zhu, Xiao Xiang and Hu, Jingliang and Qiu, Chunping and Shi, Yilei and Kang, Jian and Mou, Lichao and Bagheri, Hossein and H{\"a}berle, Matthias and Hua, Yuansheng and Huang, Rong and others}, journal={arXiv preprint arXiv:1912.12171}, year={2019} } ```