Datasets:
Create
Browse files
train.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from typing import Tuple, List
|
6 |
+
import logging
|
7 |
+
from datetime import datetime
|
8 |
+
from pathlib import Path
|
9 |
+
import json
|
10 |
+
from sklearn.preprocessing import MinMaxScaler
|
11 |
+
from ta.trend import SMAIndicator, EMAIndicator, MACD
|
12 |
+
from ta.momentum import RSIIndicator
|
13 |
+
from ta.volatility import BollingerBands
|
14 |
+
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
19 |
+
)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
class DataPreprocessor:
|
23 |
+
"""Handles data loading and preprocessing"""
|
24 |
+
|
25 |
+
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
|
26 |
+
with open(config_path) as f:
|
27 |
+
self.config = json.load(f)
|
28 |
+
self.scalers = {}
|
29 |
+
|
30 |
+
def load_data(self, data_path: str) -> pd.DataFrame:
|
31 |
+
"""Load data from CSV and add technical indicators"""
|
32 |
+
df = pd.read_csv(data_path)
|
33 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
34 |
+
df = df.sort_values('timestamp')
|
35 |
+
|
36 |
+
# Add technical indicators
|
37 |
+
df = self.add_technical_indicators(df)
|
38 |
+
|
39 |
+
return df
|
40 |
+
|
41 |
+
def add_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
|
42 |
+
"""Add technical analysis indicators"""
|
43 |
+
# SMA
|
44 |
+
df['sma_20'] = SMAIndicator(close=df['price'], window=20).sma_indicator()
|
45 |
+
df['sma_50'] = SMAIndicator(close=df['price'], window=50).sma_indicator()
|
46 |
+
|
47 |
+
# EMA
|
48 |
+
df['ema_20'] = EMAIndicator(close=df['price'], window=20).ema_indicator()
|
49 |
+
|
50 |
+
# MACD
|
51 |
+
macd = MACD(close=df['price'])
|
52 |
+
df['macd'] = macd.macd()
|
53 |
+
df['macd_signal'] = macd.macd_signal()
|
54 |
+
|
55 |
+
# RSI
|
56 |
+
df['rsi'] = RSIIndicator(close=df['price']).rsi()
|
57 |
+
|
58 |
+
# Bollinger Bands
|
59 |
+
bb = BollingerBands(close=df['price'])
|
60 |
+
df['bb_high'] = bb.bollinger_hband()
|
61 |
+
df['bb_low'] = bb.bollinger_lband()
|
62 |
+
|
63 |
+
return df
|
64 |
+
|
65 |
+
def prepare_sequences(self, df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray]:
|
66 |
+
"""Create sequences for training"""
|
67 |
+
sequence_length = self.config['data']['sequence_length']
|
68 |
+
|
69 |
+
# Scale features
|
70 |
+
for column in df.select_dtypes(include=[np.number]).columns:
|
71 |
+
if column not in self.scalers:
|
72 |
+
self.scalers[column] = MinMaxScaler()
|
73 |
+
df[column] = self.scalers[column].fit_transform(df[[column]])
|
74 |
+
|
75 |
+
# Create sequences
|
76 |
+
sequences = []
|
77 |
+
targets = []
|
78 |
+
|
79 |
+
for i in range(len(df) - sequence_length):
|
80 |
+
sequence = df.iloc[i:i + sequence_length]
|
81 |
+
target = df.iloc[i + sequence_length]['price']
|
82 |
+
sequences.append(sequence)
|
83 |
+
targets.append(target)
|
84 |
+
|
85 |
+
return np.array(sequences), np.array(targets)
|
86 |
+
|
87 |
+
class TransformerBlock(layers.Layer):
|
88 |
+
"""Transformer block with multi-head attention"""
|
89 |
+
|
90 |
+
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
|
91 |
+
super().__init__()
|
92 |
+
self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
|
93 |
+
self.ffn = tf.keras.Sequential([
|
94 |
+
layers.Dense(ff_dim, activation="relu"),
|
95 |
+
layers.Dense(embed_dim),
|
96 |
+
])
|
97 |
+
self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
|
98 |
+
self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
|
99 |
+
self.dropout1 = layers.Dropout(rate)
|
100 |
+
self.dropout2 = layers.Dropout(rate)
|
101 |
+
|
102 |
+
def call(self, inputs, training):
|
103 |
+
attn_output = self.att(inputs, inputs)
|
104 |
+
attn_output = self.dropout1(attn_output, training=training)
|
105 |
+
out1 = self.layernorm1(inputs + attn_output)
|
106 |
+
ffn_output = self.ffn(out1)
|
107 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
108 |
+
return self.layernorm2(out1 + ffn_output)
|
109 |
+
|
110 |
+
class CryptoTransformer(tf.keras.Model):
|
111 |
+
"""Main transformer model for cryptocurrency prediction"""
|
112 |
+
|
113 |
+
def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
|
114 |
+
super().__init__()
|
115 |
+
|
116 |
+
with open(config_path) as f:
|
117 |
+
self.config = json.load(f)
|
118 |
+
|
119 |
+
# Model parameters
|
120 |
+
self.num_layers = self.config['model']['n_layers']
|
121 |
+
self.d_model = self.config['model']['d_model']
|
122 |
+
self.num_heads = self.config['model']['n_heads']
|
123 |
+
self.ff_dim = self.config['model']['d_ff']
|
124 |
+
self.dropout = self.config['model']['dropout']
|
125 |
+
|
126 |
+
# Layers
|
127 |
+
self.transformer_blocks = [
|
128 |
+
TransformerBlock(self.d_model, self.num_heads, self.ff_dim, self.dropout)
|
129 |
+
for _ in range(self.num_layers)
|
130 |
+
]
|
131 |
+
self.dropout = layers.Dropout(self.dropout)
|
132 |
+
self.dense = layers.Dense(1) # Final prediction layer
|
133 |
+
|
134 |
+
def call(self, inputs):
|
135 |
+
x = inputs
|
136 |
+
for transformer_block in self.transformer_blocks:
|
137 |
+
x = transformer_block(x)
|
138 |
+
x = layers.GlobalAveragePooling1D()(x)
|
139 |
+
x = self.dropout(x)
|
140 |
+
return self.dense(x)
|
141 |
+
|
142 |
+
def train_model():
|
143 |
+
"""Main training function"""
|
144 |
+
logger.info("Starting model training")
|
145 |
+
|
146 |
+
# Initialize preprocessor and load data
|
147 |
+
preprocessor = DataPreprocessor()
|
148 |
+
df = preprocessor.load_data('data/training/kraken_trades.csv')
|
149 |
+
|
150 |
+
# Prepare sequences
|
151 |
+
X, y = preprocessor.prepare_sequences(df)
|
152 |
+
|
153 |
+
# Split data
|
154 |
+
train_size = int(0.8 * len(X))
|
155 |
+
X_train, X_test = X[:train_size], X[train_size:]
|
156 |
+
y_train, y_test = y[:train_size], y[train_size:]
|
157 |
+
|
158 |
+
# Initialize model
|
159 |
+
model = CryptoTransformer()
|
160 |
+
|
161 |
+
# Compile model
|
162 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
|
163 |
+
model.compile(
|
164 |
+
optimizer=optimizer,
|
165 |
+
loss='mse',
|
166 |
+
metrics=['mae']
|
167 |
+
)
|
168 |
+
|
169 |
+
# Train model
|
170 |
+
history = model.fit(
|
171 |
+
X_train, y_train,
|
172 |
+
epochs=100,
|
173 |
+
batch_size=32,
|
174 |
+
validation_data=(X_test, y_test),
|
175 |
+
callbacks=[
|
176 |
+
tf.keras.callbacks.EarlyStopping(
|
177 |
+
monitor='val_loss',
|
178 |
+
patience=10,
|
179 |
+
restore_best_weights=True
|
180 |
+
),
|
181 |
+
tf.keras.callbacks.ModelCheckpoint(
|
182 |
+
'models/crypto_transformer_{epoch}.h5',
|
183 |
+
save_best_only=True,
|
184 |
+
monitor='val_loss'
|
185 |
+
),
|
186 |
+
tf.keras.callbacks.TensorBoard(log_dir='logs')
|
187 |
+
]
|
188 |
+
)
|
189 |
+
|
190 |
+
# Save final model
|
191 |
+
model.save('models/crypto_transformer_final')
|
192 |
+
|
193 |
+
# Save training history
|
194 |
+
pd.DataFrame(history.history).to_csv('models/training_history.csv')
|
195 |
+
|
196 |
+
logger.info("Training completed")
|
197 |
+
return model, history
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
# Create necessary directories
|
201 |
+
Path('models').mkdir(exist_ok=True)
|
202 |
+
Path('logs').mkdir(exist_ok=True)
|
203 |
+
|
204 |
+
# Train model
|
205 |
+
model, history = train_model()
|