GotThatData commited on
Commit
50fef92
·
verified ·
1 Parent(s): 22adbb5
Files changed (1) hide show
  1. train.py +205 -0
train.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ from tensorflow.keras import layers
3
+ import pandas as pd
4
+ import numpy as np
5
+ from typing import Tuple, List
6
+ import logging
7
+ from datetime import datetime
8
+ from pathlib import Path
9
+ import json
10
+ from sklearn.preprocessing import MinMaxScaler
11
+ from ta.trend import SMAIndicator, EMAIndicator, MACD
12
+ from ta.momentum import RSIIndicator
13
+ from ta.volatility import BollingerBands
14
+
15
+ # Set up logging
16
+ logging.basicConfig(
17
+ level=logging.INFO,
18
+ format='%(asctime)s - %(levelname)s - %(message)s'
19
+ )
20
+ logger = logging.getLogger(__name__)
21
+
22
+ class DataPreprocessor:
23
+ """Handles data loading and preprocessing"""
24
+
25
+ def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
26
+ with open(config_path) as f:
27
+ self.config = json.load(f)
28
+ self.scalers = {}
29
+
30
+ def load_data(self, data_path: str) -> pd.DataFrame:
31
+ """Load data from CSV and add technical indicators"""
32
+ df = pd.read_csv(data_path)
33
+ df['timestamp'] = pd.to_datetime(df['timestamp'])
34
+ df = df.sort_values('timestamp')
35
+
36
+ # Add technical indicators
37
+ df = self.add_technical_indicators(df)
38
+
39
+ return df
40
+
41
+ def add_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame:
42
+ """Add technical analysis indicators"""
43
+ # SMA
44
+ df['sma_20'] = SMAIndicator(close=df['price'], window=20).sma_indicator()
45
+ df['sma_50'] = SMAIndicator(close=df['price'], window=50).sma_indicator()
46
+
47
+ # EMA
48
+ df['ema_20'] = EMAIndicator(close=df['price'], window=20).ema_indicator()
49
+
50
+ # MACD
51
+ macd = MACD(close=df['price'])
52
+ df['macd'] = macd.macd()
53
+ df['macd_signal'] = macd.macd_signal()
54
+
55
+ # RSI
56
+ df['rsi'] = RSIIndicator(close=df['price']).rsi()
57
+
58
+ # Bollinger Bands
59
+ bb = BollingerBands(close=df['price'])
60
+ df['bb_high'] = bb.bollinger_hband()
61
+ df['bb_low'] = bb.bollinger_lband()
62
+
63
+ return df
64
+
65
+ def prepare_sequences(self, df: pd.DataFrame) -> Tuple[np.ndarray, np.ndarray]:
66
+ """Create sequences for training"""
67
+ sequence_length = self.config['data']['sequence_length']
68
+
69
+ # Scale features
70
+ for column in df.select_dtypes(include=[np.number]).columns:
71
+ if column not in self.scalers:
72
+ self.scalers[column] = MinMaxScaler()
73
+ df[column] = self.scalers[column].fit_transform(df[[column]])
74
+
75
+ # Create sequences
76
+ sequences = []
77
+ targets = []
78
+
79
+ for i in range(len(df) - sequence_length):
80
+ sequence = df.iloc[i:i + sequence_length]
81
+ target = df.iloc[i + sequence_length]['price']
82
+ sequences.append(sequence)
83
+ targets.append(target)
84
+
85
+ return np.array(sequences), np.array(targets)
86
+
87
+ class TransformerBlock(layers.Layer):
88
+ """Transformer block with multi-head attention"""
89
+
90
+ def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
91
+ super().__init__()
92
+ self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
93
+ self.ffn = tf.keras.Sequential([
94
+ layers.Dense(ff_dim, activation="relu"),
95
+ layers.Dense(embed_dim),
96
+ ])
97
+ self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
98
+ self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
99
+ self.dropout1 = layers.Dropout(rate)
100
+ self.dropout2 = layers.Dropout(rate)
101
+
102
+ def call(self, inputs, training):
103
+ attn_output = self.att(inputs, inputs)
104
+ attn_output = self.dropout1(attn_output, training=training)
105
+ out1 = self.layernorm1(inputs + attn_output)
106
+ ffn_output = self.ffn(out1)
107
+ ffn_output = self.dropout2(ffn_output, training=training)
108
+ return self.layernorm2(out1 + ffn_output)
109
+
110
+ class CryptoTransformer(tf.keras.Model):
111
+ """Main transformer model for cryptocurrency prediction"""
112
+
113
+ def __init__(self, config_path: str = 'training_config/hyperparameters.json'):
114
+ super().__init__()
115
+
116
+ with open(config_path) as f:
117
+ self.config = json.load(f)
118
+
119
+ # Model parameters
120
+ self.num_layers = self.config['model']['n_layers']
121
+ self.d_model = self.config['model']['d_model']
122
+ self.num_heads = self.config['model']['n_heads']
123
+ self.ff_dim = self.config['model']['d_ff']
124
+ self.dropout = self.config['model']['dropout']
125
+
126
+ # Layers
127
+ self.transformer_blocks = [
128
+ TransformerBlock(self.d_model, self.num_heads, self.ff_dim, self.dropout)
129
+ for _ in range(self.num_layers)
130
+ ]
131
+ self.dropout = layers.Dropout(self.dropout)
132
+ self.dense = layers.Dense(1) # Final prediction layer
133
+
134
+ def call(self, inputs):
135
+ x = inputs
136
+ for transformer_block in self.transformer_blocks:
137
+ x = transformer_block(x)
138
+ x = layers.GlobalAveragePooling1D()(x)
139
+ x = self.dropout(x)
140
+ return self.dense(x)
141
+
142
+ def train_model():
143
+ """Main training function"""
144
+ logger.info("Starting model training")
145
+
146
+ # Initialize preprocessor and load data
147
+ preprocessor = DataPreprocessor()
148
+ df = preprocessor.load_data('data/training/kraken_trades.csv')
149
+
150
+ # Prepare sequences
151
+ X, y = preprocessor.prepare_sequences(df)
152
+
153
+ # Split data
154
+ train_size = int(0.8 * len(X))
155
+ X_train, X_test = X[:train_size], X[train_size:]
156
+ y_train, y_test = y[:train_size], y[train_size:]
157
+
158
+ # Initialize model
159
+ model = CryptoTransformer()
160
+
161
+ # Compile model
162
+ optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4)
163
+ model.compile(
164
+ optimizer=optimizer,
165
+ loss='mse',
166
+ metrics=['mae']
167
+ )
168
+
169
+ # Train model
170
+ history = model.fit(
171
+ X_train, y_train,
172
+ epochs=100,
173
+ batch_size=32,
174
+ validation_data=(X_test, y_test),
175
+ callbacks=[
176
+ tf.keras.callbacks.EarlyStopping(
177
+ monitor='val_loss',
178
+ patience=10,
179
+ restore_best_weights=True
180
+ ),
181
+ tf.keras.callbacks.ModelCheckpoint(
182
+ 'models/crypto_transformer_{epoch}.h5',
183
+ save_best_only=True,
184
+ monitor='val_loss'
185
+ ),
186
+ tf.keras.callbacks.TensorBoard(log_dir='logs')
187
+ ]
188
+ )
189
+
190
+ # Save final model
191
+ model.save('models/crypto_transformer_final')
192
+
193
+ # Save training history
194
+ pd.DataFrame(history.history).to_csv('models/training_history.csv')
195
+
196
+ logger.info("Training completed")
197
+ return model, history
198
+
199
+ if __name__ == "__main__":
200
+ # Create necessary directories
201
+ Path('models').mkdir(exist_ok=True)
202
+ Path('logs').mkdir(exist_ok=True)
203
+
204
+ # Train model
205
+ model, history = train_model()