--- license: cc-by-4.0 task_categories: - text2text-generation - translation - text-generation language: - ar - en tags: - text-image pairs - proverbs - culture - heritage - generative - prompt size_categories: - n < 1K dataset_info: features: - name: tunisan_proverb dtype: string - name: proverb_arabic_explaination dtype: string - name: context dtype: string - name: caption dtype: string - name: caption_formal dtype: string - name: dynamic dtype: string - name: prompt dtype: string - name: image_path_1 dtype: image - name: image_path_2 dtype: image - name: image_path_3 dtype: image - name: image_path_4 dtype: image - name: clip_scores dtype: float32 configs: - config_name: default data_files: - dataset.csv description: > This configuration contains Tunisian proverbs with corresponding textual explanations and up to four AI-generated image associations per entry, covering cultural and linguistic insight. ---

Tunisian Proverbs with Image Associations: A Cultural and Linguistic Dataset

## Description This dataset explores the rich oral tradition of Tunisian proverbs mapped into text format, pairing each with contextual explanations, English translations both word-to-word and it's equivalent Target Language dynamic, Automated prompt and AI-generated visual interpretations. It bridges linguistic, cultural, and visual modalities making it valuable for tasks in cross-cultural NLP, generative art, and multi-modal learning for low-resourced Language such as the Arabic Tunisian Dialect. ## Some Selections

ظل راجل ولا ظل حيط

الملح و الصحبة

كل قرده في عين امه غزال

قلبه أبيض كالحليب

اضرب القطوسة تتأدب العروسة

اللي وجهها يفجعها مال بوها ينفعها
## Objectives

Dataset Structure

## Language & Cultural Focus: ## How to Use To load the dataset in Google Colab, you can use the datasets library from Hugging Face: ```python from datasets import load_dataset import cv2 from google.colab.patches import cv2_imshow # Load the dataset dataset = load_dataset("Heubub/Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset") # Get the first sample from the 'train' split sample = dataset["train"][0] # Extract proverb and prompt and images e.g the first image proverb = sample["tunisan_proverb"] prompt = sample["prompt"] image_path_1 = sample["image_path_1"] print(f"Proverb: {proverb}") print(f"Prompt: {prompt}") img_bgr = np.array(image_path_1)[:, :, ::-1] cv2_imshow(img_bgr) ##Citation If you use this dataset, please cite it as follows: @misc{abderrahim_habiba_2025, author = { Abderrahim Habiba and Hedi Ayadi and Fadoua Ouamani }, title = { Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset (Revision c524d31) }, year = 2025, url = { https://huggingface.co/datasets/HabibaAbderrahim/Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset }, doi = { 10.57967/hf/5189 }, publisher = { Hugging Face } }