Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Hagon commited on
Commit
c3e399d
·
verified ·
1 Parent(s): 24e5a2c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -3
README.md CHANGED
@@ -90,9 +90,11 @@ configs:
90
  ---
91
 
92
  # Overview
 
 
 
93
 
94
- # Dataset
95
- ## Data Instances Structure
96
  An example of a Multi-SWE-bench datum is as follows:
97
  ```
98
  org: (str) - Organization name identifier from Github.
@@ -116,4 +118,98 @@ fix_patch_result: (dict) - The result after all the patches were applied.
116
  instance_id: (str) - A formatted instance identifier, usually as org__repo_PR-number.
117
  ```
118
 
119
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  ---
91
 
92
  # Overview
93
+ We are extremely delighted to release Multi-SWE-Bench.
94
+ Multi-SWE-Bench aims to build a multi-language benchmark dataset containing real software engineering scenarios for evaluating the ability of LLM to solve real software engineering problems.
95
+ The dataset supports multiple languages, currently including C, C++, Java, Javascript, Typescript, Rust, Go.
96
 
97
+ # Data Instances Structure
 
98
  An example of a Multi-SWE-bench datum is as follows:
99
  ```
100
  org: (str) - Organization name identifier from Github.
 
118
  instance_id: (str) - A formatted instance identifier, usually as org__repo_PR-number.
119
  ```
120
 
121
+ # Usage
122
+ Because huggingface's dataset library does not support complex nested structures,
123
+ there are nested structures within these fields that have been serialized in the original dataset(huggingface),
124
+ and you'll have to deserialize these if you want to use this dataset.
125
+ ```python
126
+ SERIALIZATION_FIELDS = [
127
+ 'base', 'fixed tests', 'p2p_tests', 'f2p_tests',
128
+ 's2p_tests', 'n2p_tests', 'run_result',
129
+ 'test_patch_result', 'fix_patch_result'
130
+ ]
131
+ ```
132
+
133
+ ## sample
134
+ ```python
135
+ from datasets import load_dataset, config
136
+ import pandas as pd
137
+ import os
138
+ import json
139
+
140
+ # Constant definitions
141
+ # There are nested structures within these fields, which were serialized in the original dataset, and now these need to be deserialized
142
+ SERIALIZATION_FIELDS = [
143
+ 'base', 'fixed tests', 'p2p_tests', 'f2p_tests',
144
+ 's2p_tests', 'n2p_tests', 'run_result',
145
+ 'test_patch_result', 'fix_patch_result'
146
+ ]
147
+ CACHE_DIR = 'D:/huggingface_cache'
148
+
149
+ def safe_deserialize(value):
150
+ """Safely deserialize a JSON string"""
151
+ try:
152
+ if value in (None, ''):
153
+ return None
154
+ return json.loads(value)
155
+ except (TypeError, json.JSONDecodeError) as e:
156
+ print(f"Deserialization failed: {str(e)}")
157
+ return value
158
+
159
+ def load_hf_dataset():
160
+ """Load a HuggingFace dataset"""
161
+ os.environ['HF_HOME'] = CACHE_DIR
162
+ config.HF_DATASETS_CACHE = CACHE_DIR
163
+ return load_dataset("Hagon/test2", split='cpp')
164
+
165
+ def analyze_dataset_structure(dataset):
166
+ """Analyze and print the dataset structure"""
167
+ print(f"Dataset size: {len(dataset)}")
168
+ print("\nDataset structure analysis: " + "-" * 50)
169
+ print("Field names and types:")
170
+ for name, dtype in dataset.features.items():
171
+ print(f" {name}: {str(dtype)}")
172
+
173
+ def print_data_types(dataset, sample_count=3):
174
+ """Print the data types of sample data"""
175
+ print(f"\nData types of the first {sample_count} samples:")
176
+ for i in range(min(sample_count, len(dataset))):
177
+ print(f"\nSample {i}:")
178
+ for key, value in dataset[i].items():
179
+ print(f" {key}: {type(value).__name__} ({len(str(value))} chars)")
180
+
181
+ def analyze_serialization(dataset, sample_count=3):
182
+ """Analyze the deserialization results of fields"""
183
+ print("\nDeserialization result analysis: " + "-" * 50)
184
+ for i in range(min(sample_count, len(dataset))):
185
+ print(f"\nSample {i}:")
186
+ item = dataset[i]
187
+ for key in SERIALIZATION_FIELDS:
188
+ safe_key = key.replace(' ', '_')
189
+ raw_value = item.get(safe_key)
190
+ deserialized = safe_deserialize(raw_value)
191
+
192
+ print(f"Field [{key}]:")
193
+ print(f" Original type: {type(raw_value).__name__}")
194
+ print(f" Deserialized type: {type(deserialized).__name__ if deserialized else 'None'}")
195
+
196
+ if isinstance(deserialized, dict):
197
+ sample = dict(list(deserialized.items())[:2])
198
+ print(f" Sample content: {str(sample)[:200]}...")
199
+ elif deserialized:
200
+ print(f" Content preview: {str(deserialized)[:200]}...")
201
+ else:
202
+ print(" Empty/Invalid data")
203
+
204
+ def main():
205
+ """Main function entry"""
206
+ dataset = load_hf_dataset()
207
+ # analyze_dataset_structure(dataset)
208
+ # print_data_types(dataset)
209
+ analyze_serialization(dataset)
210
+
211
+ if __name__ == "__main__":
212
+ main()
213
+
214
+ ```
215
+