Datasets:

Languages:
English
ArXiv:
License:
File size: 5,381 Bytes
41c285e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import List
import datasets

def parse_fasta(fp):
    name, seq = None, []
    for line in fp:
        line = line.rstrip()
        if line.startswith(">"):
            if name:
                # Slice to remove '>'
                yield (name[1:], "".join(seq))
            name, seq = line, []
        else:
            seq.append(line)
    if name:
        # Slice to remove '>'
        yield (name[1:], "".join(seq))


_CITATION = """\
@article{boshar2024gLMsForProteins,
  title={Are Genomic Language Models All You Need? Exploring Genomic Language Models on Protein Downstream Tasks},
  author={Sam Boshar, Evan Trop, Bernardo P. de Almeida, Lviua Copoiu, Thomas Pierrot},
  journal={bioRxiv},
  pages={},
  year={2024},
  publisher={}
}
'''
"""

# You can copy an official description
_DESCRIPTION = """\
This dataset comprises 5 downstream protein tasks with associated true CDS sequences considered in the paper. The tasks include five which are regression, and one which is multi-label classification. Each task corresponds to a dataset configuration.
"""

_HOMEPAGE = "https://github.com/instadeepai/gLMs-for-proteins"

_LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md"

_TASKS =  ['beta_lactamase_complete',
            'beta_lactamase_unique',
            'ssp',
            'stability',
            'melting_point',
            'fluorescence'
            ]

class ProteinTrueCDSConfig(datasets.BuilderConfig):
    """BuilderConfig for protein True CDS tasks."""

    def __init__(self, *args, task: str, **kwargs):
        """BuilderConfig downstream tasks dataset.
        Args:
            task (:obj:`str`): Task name.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name=f"{task}",
            **kwargs,
        )
        self.task = task


class ProteinTrueCDSDownstreamTasks(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.1.0")
    BUILDER_CONFIG_CLASS = ProteinTrueCDSConfig
    BUILDER_CONFIGS = [
        ProteinTrueCDSConfig(task=task) for task in _TASKS
    ]

    # DEFAULT_CONFIG_NAME = "enhancers"

    def _info(self):
        if self.config.task == 'ssp':
            label_type = datasets.Sequence(datasets.Value("int32"))
        else:
            label_type = datasets.Value("float32")

        features = datasets.Features(
            {
                "sequence": datasets.Value("string"),
                "label": label_type,
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(
            self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:

        if self.config.task == 'ssp':
            train_file = dl_manager.download_and_extract(self.config.task + "/train.fna")
            train_dataset = datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"file": train_file}
            )
            test_datasets = [
                datasets.SplitGenerator(
                    name=name, gen_kwargs={
                        "file": dl_manager.download_and_extract(self.config.task + f"/{name}.fna")
                    }
                ) for name in ['CASP12', 'CB513', 'TS115']]
            return [train_dataset] + test_datasets

        else:
            val_file = dl_manager.download_and_extract(self.config.task + "/val.fna")
            train_file = dl_manager.download_and_extract(self.config.task + "/train.fna")
            test_file = dl_manager.download_and_extract(self.config.task + "/test.fna")

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN, gen_kwargs={"file": train_file}
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST, gen_kwargs={"file": test_file}
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION, gen_kwargs={"file": val_file}
                ),
            ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, file):
        key = 0
        with open(file, "rt") as f:
            fasta_sequences = parse_fasta(f)

            for name, seq in fasta_sequences:
                # parse descriptions in the fasta file
                sequence, name = str(seq), str(name)
                if self.config.task != 'ssp':
                    label = float(name.split("|")[-1])
                else:
                    label = [int(i) for i in name.split("|")[-1]]

                # yield example
                yield key, {
                    "sequence": sequence,
                    "label": label,
                }
                key += 1