File size: 7,249 Bytes
264e00c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import numpy as np
from typing import List, Dict, Optional
from sklearn.metrics import roc_auc_score, average_precision_score
def gene_precision(pred: List[str], ref: List[str]) -> float:
if len(pred) == 0:
return 1.0 if len(ref) == 0 else 0.0
return sum([p in ref for p in pred]) / len(pred)
def gene_recall(pred: List[str], ref: List[str]) -> float:
if len(ref) == 0:
return 1.0 if len(pred) == 0 else 0.0
return sum([p in pred for p in ref]) / len(ref)
def gene_f1(pred: List[str], ref: List[str]) -> float:
prec = gene_precision(pred, ref)
rec = gene_recall(pred, ref)
if prec + rec == 0:
return 0.0
return 2.0 * (prec * rec) / (prec + rec)
def gsea_enrichment_score(ranked_genes: List[str], ref_genes: List[str]) -> float:
"""
Compute a simple GSEA-like Enrichment Score (ES) using an unweighted running sum.
"""
ref_set = set(ref_genes)
N = len(ranked_genes)
Nh = len(ref_set)
Nm = N - Nh
if Nh == 0 or Nh == N:
return float('nan')
hit_inc = 1.0 / float(Nh)
miss_inc = 1.0 / float(Nm)
running_sum = 0.0
max_enrichment = -999999.0
for g in ranked_genes:
if g in ref_set:
running_sum += hit_inc
else:
running_sum -= miss_inc
if running_sum > max_enrichment:
max_enrichment = running_sum
return max_enrichment
def compute_auroc_auprc_full(pred_genes: List[str],
ref_genes: List[str],
all_genes: List[str]) -> (float, float):
"""
Compute AUROC/AUPRC by assigning a strictly descending score
to each predicted gene (based on its index in pred_genes) and
zero to all unselected genes.
"""
pred_set = set(pred_genes)
ref_set = set(ref_genes)
top_len = len(pred_genes)
# Build a dictionary: gene -> score
# If you already have actual coefficients, you could fill them in here instead.
gene_scores = {}
for i, g in enumerate(pred_genes):
# Highest score for the 1st gene in pred_genes, second-highest for the 2nd, etc.
# i=0 => rank = top_len; i=1 => rank = top_len-1, etc.
gene_scores[g] = float(top_len - i)
# Now assign score=0 to all other genes in all_genes
for g in all_genes:
if g not in gene_scores:
gene_scores[g] = 0.0
# Build arrays for scikit-learn
y_true = np.array([1 if g in ref_set else 0 for g in all_genes], dtype=int)
y_score = np.array([gene_scores[g] for g in all_genes], dtype=float)
# Handle edge cases where all positives or all negatives
if np.all(y_true == 0) or np.all(y_true == 1):
return float('nan'), float('nan')
auroc = roc_auc_score(y_true, y_score)
auprc = average_precision_score(y_true, y_score)
return auroc, auprc
def compute_auroc_auprc_approx(pred_genes: List[str], ref_genes: List[str],
n_genes: int = 20000):
"""
Approximate AUROC/AUPRC if we only know which genes are predicted vs. not,
and assume all unselected genes share the same (zero) score
"""
pred_set = set(pred_genes)
ref_set = set(ref_genes)
top_len = len(pred_genes)
if top_len > n_genes:
print(f"Warning: predicted {top_len} genes, but only {n_genes} possible. Truncating.")
pred_genes = pred_genes[:n_genes]
pred_set = set(pred_genes)
top_len = n_genes
scores = np.zeros(n_genes, dtype=float)
labels = np.zeros(n_genes, dtype=int)
# Give descending scores to the predicted genes
for i, g in enumerate(pred_genes):
scores[i] = float(top_len - i)
labels[i] = 1 if g in ref_set else 0
# All other genes are 0. No random sprinkling of 'missed' positives.
# This means if a true positive wasn't predicted, it simply won't appear
# in these top-len indices as '1'.
# Now the *number* of positive labels in labels might be smaller
# than the real total # of positives, but we can't fix that without
# full knowledge or a custom approach.
if len(ref_set) == 0 or len(ref_set) == n_genes:
return float('nan'), float('nan')
# Edge cases
if np.all(labels == 0) or np.all(labels == 1):
return float('nan'), float('nan')
auroc = roc_auc_score(labels, scores)
auprc = average_precision_score(labels, scores)
return auroc, auprc
def evaluate_gene_selection(pred: List[str],
ref: List[str],
all_genes: Optional[List[str]] = None,
n_genes: int = 20000,
do_gsea: bool = True) -> Dict[str, float]:
"""
Evaluate the performance of predicted gene selection against a reference set,
with:
- Precision, Recall, F1
- AUROC, AUPRC (via a ranking-based approach)
- Simple GSEA-ES (if do_gsea=True)
"""
# Basic set-based metrics
precision_val = gene_precision(pred, ref)
recall_val = gene_recall(pred, ref)
f1_val = gene_f1(pred, ref)
# Compute AUROC / AUPRC: use our new ranking-based function if all_genes is given
if all_genes is not None:
auroc_val, auprc_val = compute_auroc_auprc_full(pred, ref, all_genes)
else:
# If you have NO list of all genes, you can still do your approximate approach,
# but you might want to remove the random assignment from that function:
auroc_val, auprc_val = compute_auroc_auprc_approx(pred, ref, n_genes)
# Compute a GSEA-like enrichment score, if requested
if do_gsea:
# If we have all_genes, let's create a ranking by sorting them by the assigned score.
es_val = float('nan')
if all_genes is not None and len(all_genes) > 0:
# We'll re-use the same scoring logic to create a fully ordered list
# from highest to lowest rank.
# Build the same gene_scores dict used in compute_auroc_auprc_full:
pred_set = set(pred)
top_len = len(pred)
gene_scores = {}
for i, g in enumerate(pred):
gene_scores[g] = float(top_len - i)
for g in all_genes:
if g not in gene_scores:
gene_scores[g] = 0.0
# Sort all_genes by descending score
ranked_list = sorted(all_genes, key=lambda x: gene_scores[x], reverse=True)
es_val = gsea_enrichment_score(ranked_list, ref)
else:
# If we don't have all_genes, revert to the old logic
tail_count = n_genes - len(pred)
if tail_count >= 0:
dummy_genes = [f"UNK_{i}" for i in range(tail_count)]
ranked_list = list(pred) + dummy_genes
es_val = gsea_enrichment_score(ranked_list, ref)
else:
es_val = float('nan')
else:
es_val = float('nan')
# print("AUROC:", auroc_val, "AUPRC:", auprc_val, "GSEA-ES:", es_val)
return {
'precision': precision_val * 100.0,
'recall': recall_val * 100.0,
'f1': f1_val * 100.0,
'auroc': auroc_val,
#'auprc': auprc_val,
'gsea_es': es_val
}
|