|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Atherosclerosis" |
|
cohort = "GSE109048" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Atherosclerosis" |
|
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE109048" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE109048.csv" |
|
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE109048.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE109048.csv" |
|
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" |
|
|
|
|
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=background_prefixes, |
|
prefixes_b=clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
""" |
|
Convert the diagnosis info (sCAD, STEMI, healthy) to a binary code: |
|
1 for atherosclerosis (sCAD or STEMI), 0 for healthy, None if unknown. |
|
""" |
|
parts = value.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
if val in ["scad", "stemi"]: |
|
return 1 |
|
elif val == "healthy": |
|
return 0 |
|
else: |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
""" |
|
No age data available, so we simply return None. |
|
""" |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
""" |
|
No gender data available, so we simply return None. |
|
""" |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_data = preview_df(selected_clinical_df) |
|
print("Preview of extracted clinical features:", preview_data) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
print("They are microarray probe IDs and require further mapping to standard gene symbols.") |
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
prob_col = "probeset_id" |
|
gene_col = "gene_assignment" |
|
|
|
|
|
if prob_col not in gene_annotation.columns or gene_col not in gene_annotation.columns: |
|
print(f"Columns '{prob_col}' or '{gene_col}' not found in annotation. Skipping mapping.") |
|
else: |
|
mapping_df = gene_annotation.loc[:, [prob_col, gene_col]].dropna().copy() |
|
|
|
mapping_df = mapping_df.rename(columns={prob_col: 'ID', gene_col: 'Gene'}) |
|
mapping_df['ID'] = mapping_df['ID'].astype(str) |
|
|
|
|
|
common_ids = set(mapping_df['ID']).intersection(set(gene_data.index)) |
|
if not common_ids: |
|
print("No matching probe IDs found between gene_data and annotation. Skipping mapping.") |
|
else: |
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
print("Mapped gene_data shape:", gene_data.shape) |
|
print(gene_data.head()) |
|
import os |
|
import pandas as pd |
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print("Normalized gene expression data saved to:", out_gene_data_file) |
|
|
|
|
|
if not os.path.exists(out_clinical_data_file): |
|
|
|
dummy_df = pd.DataFrame() |
|
trait_biased = True |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=trait_biased, |
|
df=dummy_df, |
|
note="No trait data found. This dataset is not usable for final analysis." |
|
) |
|
print("Clinical data file not found. Skipping linking and final data export.") |
|
else: |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0, index_col=0) |
|
|
|
|
|
if selected_clinical_df.shape[0] == 1: |
|
selected_clinical_df.index = [trait] |
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
df = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, df = judge_and_remove_biased_features(df, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=df, |
|
note="Final step with linking, missing-value handling, and bias checks." |
|
) |
|
|
|
|
|
if is_usable: |
|
df.to_csv(out_data_file) |
|
print(f"Final linked data saved to: {out_data_file}") |
|
else: |
|
print("Dataset is not usable or severely biased. No final data saved.") |