|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Atherosclerosis" |
|
cohort = "GSE83500" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Atherosclerosis" |
|
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE83500" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE83500.csv" |
|
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE83500.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE83500.csv" |
|
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" |
|
|
|
|
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=background_prefixes, |
|
prefixes_b=clinical_prefixes |
|
) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = None |
|
age_row = 1 |
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(value: str): |
|
|
|
return None |
|
|
|
def convert_age(value: str): |
|
|
|
parts = value.split(":") |
|
if len(parts) < 2: |
|
return None |
|
age_str = parts[1].strip() |
|
try: |
|
return float(age_str) |
|
except ValueError: |
|
return None |
|
|
|
def convert_gender(value: str): |
|
|
|
parts = value.split(":") |
|
if len(parts) < 2: |
|
return None |
|
gender_str = parts[1].strip().lower() |
|
if gender_str == 'male': |
|
return 1 |
|
elif gender_str == 'female': |
|
return 0 |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
|
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
|
|
|
|
|
|
print("requires_gene_mapping = True") |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
|
|
print("Gene data shape after mapping:", gene_data.shape) |
|
print("First 20 gene symbols in the mapped data:", list(gene_data.index[:20])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
print("Normalized gene expression data saved to:", out_gene_data_file) |
|
|
|
|
|
|
|
|
|
|
|
empty_df = pd.DataFrame() |
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=False, |
|
df=empty_df, |
|
note="No trait data available; dataset cannot be used for trait-based analysis." |
|
) |
|
|
|
if is_usable: |
|
print("Unexpectedly marked usable despite missing trait data.") |
|
else: |
|
print("Dataset is not usable due to missing trait data. No final data saved.") |