# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Bipolar_disorder" | |
cohort = "GSE45484" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Bipolar_disorder" | |
in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE45484" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE45484.csv" | |
out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE45484.csv" | |
out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE45484.csv" | |
json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
is_gene_available = True # Based on "Analysis of gene-expression changes..." we have gene expression data. | |
# 2. Variable Availability and Data Type Conversion | |
# From the sample characteristics, it appears all subjects have bipolar disorder (the trait), | |
# so there's no variation for "Bipolar_disorder". Hence trait_row = None. | |
trait_row = None | |
# For age, key=4 has many distinct values, so age is available. | |
age_row = 4 | |
# For gender, key=3 has two distinct values: "sex: M" and "sex: F", so gender is available. | |
gender_row = 3 | |
# Define conversion functions. They parse the string after the colon (':'), then convert. | |
def convert_trait(value: str): | |
# No variation in trait. This won't be used because trait_row=None, but we still define it. | |
return None | |
def convert_age(value: str): | |
# Example: "age: 46" | |
# Split on colon and strip spaces | |
parts = value.split(':') | |
if len(parts) < 2: | |
return None | |
try: | |
return float(parts[1].strip()) | |
except ValueError: | |
return None | |
def convert_gender(value: str): | |
# Example: "sex: M" or "sex: F" | |
# Split on colon and strip spaces | |
parts = value.split(':') | |
if len(parts) < 2: | |
return None | |
gender_str = parts[1].strip().upper() | |
if gender_str == 'M': | |
return 1 | |
elif gender_str == 'F': | |
return 0 | |
return None | |
# 3. Save Metadata. Trait data is not available since trait_row=None. | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# We only proceed if trait_row is not None. Here, trait_row=None, so skip this step. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
# Based on the gene identifiers (e.g., ILMN_1651199), these are Illumina probe identifiers. | |
# Therefore, we require gene symbol mapping. | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Identify columns for probe IDs ("ID") and gene symbols ("Symbol") from the annotation data. | |
# 2. Get the gene mapping dataframe. | |
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') | |
# 3. Convert probe-level measurements to gene-level measurements. | |
gene_data = apply_gene_mapping(gene_data, gene_mapping_df) | |
# STEP7 | |
import pandas as pd | |
# 1. Normalize gene symbols in the obtained gene data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# Since in Step 2 we determined that 'trait_row' is None, the trait is not actually available (all samples had the same trait). | |
# Therefore, there's no valid 'selected_clinical_df' to link. We must skip the processing steps that rely on trait information. | |
if trait_row is None: | |
# Final validation with trait unavailable. We still need to pass df and is_biased for is_final=True. | |
# Here, we consider the dataset "biased" for trait analysis, as it has no variation in the trait. | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=True, | |
df=pd.DataFrame(), # Provide an empty DataFrame | |
note="No trait variation found; skipping clinical linking." | |
) | |
else: | |
# If trait were available, we would have proceeded with linking, missing value handling, bias checks, etc. | |
pass | |
# If the dataset were usable, we would save the final linked data. | |
# With no trait available, 'is_usable' should be False, so nothing further is done. |