|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Bipolar_disorder" |
|
cohort = "GSE62191" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Bipolar_disorder" |
|
in_cohort_dir = "../DATA/GEO/Bipolar_disorder/GSE62191" |
|
|
|
|
|
out_data_file = "./output/preprocess/1/Bipolar_disorder/GSE62191.csv" |
|
out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/GSE62191.csv" |
|
out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/GSE62191.csv" |
|
json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" |
|
|
|
|
|
from tools.preprocess import * |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] |
|
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) |
|
|
|
|
|
sample_characteristics_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("Sample Characteristics Dictionary:") |
|
print(sample_characteristics_dict) |
|
import re |
|
import pandas as pd |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
age_row = 2 |
|
|
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
|
|
parts = value.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
|
|
if 'bipolar disorder' in val: |
|
return 1 |
|
elif any(x in val for x in ['healthy control', 'schizophrenia']): |
|
return 0 |
|
else: |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
|
|
parts = value.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
|
|
match = re.search(r'(\d+)', val) |
|
if match: |
|
return float(match.group(1)) |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
|
|
parts = value.split(':') |
|
if len(parts) < 2: |
|
return None |
|
val = parts[1].strip().lower() |
|
if 'male' in val: |
|
return 1 |
|
elif 'female' in val: |
|
return 0 |
|
else: |
|
return None |
|
|
|
|
|
is_trait_available = (trait_row is not None) |
|
passed_initial_filter = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
|
|
|
|
data = { |
|
0: ['tissue: brain (frontal cortex)']*3, |
|
1: ['disease state: bipolar disorder', 'disease state: healthy control', 'disease state: schizophrenia'], |
|
2: ['age: 29 yr', 'age: 58 yr', 'age: 42 yr'], |
|
3: ['population: white']*3, |
|
4: ['dsm-iv: 296.54']*3, |
|
5: ['age of onset: 22 yr']*3, |
|
6: [None, 'gender: male', None], |
|
} |
|
clinical_data = pd.DataFrame.from_dict(data, orient='index') |
|
|
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait="Trait", |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
preview_result = preview_df(selected_clinical_df, n=5) |
|
print("Preview of selected clinical features:") |
|
print(preview_result) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file, index=False) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print(gene_data.index[:20]) |
|
requires_gene_mapping = True |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping( |
|
annotation=gene_annotation, |
|
prob_col='ID', |
|
gene_col='GENE_SYMBOL' |
|
) |
|
|
|
|
|
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df) |
|
|
|
|
|
print("Mapped gene_data shape:", gene_data.shape) |
|
print("First few rows of mapped gene_data:") |
|
print(gene_data.head()) |
|
|
|
|
|
|
|
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) |
|
normalized_gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) |
|
|
|
|
|
linked_data_processed = handle_missing_values(linked_data, trait_col="Trait") |
|
|
|
|
|
trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, "Trait") |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data_final, |
|
note="Dataset processed with GEO pipeline. Checked for missing values and bias." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data_final.to_csv(out_data_file) |