Liu-Hy's picture
Add files using upload-large-folder tool
0815237 verified
raw
history blame contribute delete
6 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cystic_Fibrosis"
cohort = "GSE60690"
# Input paths
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE60690"
# Output paths
out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE60690.csv"
out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE60690.csv"
out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE60690.csv"
json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# From the background info ("global gene expression was measured in RNA from LCLs"),
# it is clear that the dataset contains gene expression data.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# - The "trait" here is "Cystic_Fibrosis", but the background indicates
# this dataset is entirely CF patients (no variation). Hence treat as not available.
trait_row = None
# - Age is found in row 2 ("age of enrollment: ...").
age_row = 2
# - Gender is found in row 0 ("Sex: Male", "Sex: Female").
gender_row = 0
# 2.2 Data Type Conversion
import re
def convert_trait(value: str) -> int:
"""
Although trait_row is None (trait not available),
define a function for completeness.
Returns None if called, as there's no variation here.
"""
return None
def convert_age(value: str) -> float:
"""
Convert 'age of enrollment: 38.2' -> 38.2 (float).
If 'NA', return None.
"""
# Extract the portion after the colon
parts = value.split(':')
if len(parts) < 2:
return None
age_str = parts[1].strip()
if age_str.upper() == 'NA':
return None
try:
return float(age_str)
except ValueError:
return None
def convert_gender(value: str) -> int:
"""
Convert 'Sex: Male' -> 1
'Sex: Female' -> 0
Otherwise return None.
"""
parts = value.split(':')
if len(parts) < 2:
return None
gender_str = parts[1].strip().lower()
if gender_str == 'male':
return 1
elif gender_str == 'female':
return 0
return None
# 3. Save Metadata
# trait data availability depends on trait_row.
is_trait_available = trait_row is not None
usable_status = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip this step because trait_row is None (no trait variation).
# Thus, we do not call geo_select_clinical_features.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6: Gene Identifier Mapping
# 1. Identify the columns in 'gene_annotation' that match the probe IDs in 'gene_data'
# and the column that stores gene symbols. Based on inspection, "ID" aligns with
# the probe identifiers in the expression data, and "gene_assignment" stores gene symbols.
probe_col = "ID"
gene_symbol_col = "gene_assignment"
# 2. Extract a mapping dataframe containing these two columns
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
# 3. Apply the mapping to convert the probe-level expression data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7
# 1) Normalize the gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# The dataset lacks trait variation (only CF patients), so no clinical data can be used for association.
# We skip linking to clinical data and skip further steps requiring trait info.
# 2) Final validation and saving metadata
# The library requires non-None boolean for 'is_biased' when is_final=True.
# Since there's no trait variation, we consider it "biased" for association.
is_biased = True
_ = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased,
df=pd.DataFrame(), # Passing an empty DataFrame as the dataset for final validation
note="All samples are CF patients; no variation in the trait."
)
# 3) Because the trait is unavailable for association, the dataset is not usable.
# We therefore do not create or save any linked data CSV file.