# Path Configuration | |
from tools.preprocess import * | |
# Processing context | |
trait = "Cystic_Fibrosis" | |
cohort = "GSE71799" | |
# Input paths | |
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" | |
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE71799" | |
# Output paths | |
out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE71799.csv" | |
out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE71799.csv" | |
out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE71799.csv" | |
json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" | |
# STEP1 | |
from tools.preprocess import * | |
# 1. Identify the paths to the SOFT file and the matrix file | |
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) | |
# 2. Read the matrix file to obtain background information and sample characteristics data | |
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] | |
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] | |
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) | |
# 3. Obtain the sample characteristics dictionary from the clinical dataframe | |
sample_characteristics_dict = get_unique_values_by_row(clinical_data) | |
# 4. Explicitly print out all the background information and the sample characteristics dictionary | |
print("Background Information:") | |
print(background_info) | |
print("Sample Characteristics Dictionary:") | |
print(sample_characteristics_dict) | |
# 1. Gene Expression Data Availability | |
# According to the background summary, gene expression analysis was performed, so: | |
is_gene_available = True | |
# 2. Variable Availability and Data Type Conversion | |
# Based on the sample characteristics dictionary: | |
# {0: ['responder cells: UPN727 cells']} | |
# There's a single key (0) with the same value for all samples, which does not provide trait, | |
# age, or gender variability. Therefore, all three are considered not available. | |
trait_row = None | |
age_row = None | |
gender_row = None | |
# Define conversion functions (though they won't be used due to None rows). | |
def convert_trait(value: str): | |
# No actual data keys to parse, return None | |
return None | |
def convert_age(value: str): | |
# No actual data keys to parse, return None | |
return None | |
def convert_gender(value: str): | |
# No actual data keys to parse, return None | |
return None | |
# 3. Save metadata with initial filtering | |
# Trait availability depends on whether trait_row is None. | |
is_trait_available = (trait_row is not None) | |
is_usable = validate_and_save_cohort_info( | |
is_final=False, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=is_gene_available, | |
is_trait_available=is_trait_available | |
) | |
# 4. Clinical Feature Extraction | |
# Since trait_row is None, we skip this step. | |
# STEP3 | |
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. | |
gene_data = get_genetic_data(matrix_file) | |
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. | |
print(gene_data.index[:20]) | |
print("requires_gene_mapping = True") | |
# STEP5 | |
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. | |
gene_annotation = get_gene_annotation(soft_file) | |
# 2. Use the 'preview_df' function from the library to preview the data and print out the results. | |
print("Gene annotation preview:") | |
print(preview_df(gene_annotation)) | |
# STEP: Gene Identifier Mapping | |
# 1. Identify columns in the annotation dataframe: 'ID' for probe identifiers and 'Gene Symbol' for gene symbols | |
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") | |
# 2. Convert probe-level expression data to gene-level expression data | |
gene_data = apply_gene_mapping(gene_data, mapping_df) | |
import os | |
import pandas as pd | |
# STEP 7 (Revised with dummy DataFrame for final validation) | |
# 1) Normalize gene symbols in the obtained gene expression data | |
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) | |
normalized_gene_data.to_csv(out_gene_data_file) | |
# Because trait_row is None, there's no clinical data to link, so we skip trait-related steps. | |
# 2) Provide a dummy DataFrame and is_biased flag for final validation | |
dummy_df = pd.DataFrame() | |
dummy_is_biased = False | |
# 3) Final validation | |
is_usable = validate_and_save_cohort_info( | |
is_final=True, | |
cohort=cohort, | |
info_path=json_path, | |
is_gene_available=True, | |
is_trait_available=False, | |
is_biased=dummy_is_biased, | |
df=dummy_df, | |
note="No trait data in GSE71799, only gene expression data." | |
) | |
# 4) Since the dataset is not usable due to no trait data, do not save any linked data. |