Liu-Hy's picture
Add files using upload-large-folder tool
4c09b1c verified
raw
history blame contribute delete
4.64 kB
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Alopecia"
cohort = "GSE18876"
# Input paths
in_trait_dir = "../DATA/GEO/Alopecia"
in_cohort_dir = "../DATA/GEO/Alopecia/GSE18876"
# Output paths
out_data_file = "./output/preprocess/3/Alopecia/GSE18876.csv"
out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE18876.csv"
out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE18876.csv"
json_path = "./output/preprocess/3/Alopecia/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Gene expression data availability
# Yes - the series title and summary mention transcriptional profiling using exon arrays
is_gene_available = True
# Variable rows and conversion functions
trait_row = None # Cannot reliably determine alopecia status from characteristics
age_row = 0 # Age is in feature 0
gender_row = None # Not needed since all samples are male based on background info
def convert_age(value):
if not value or ':' not in value:
return None
try:
age = int(value.split(':')[1].strip())
return age
except:
return None
# Note: trait and gender conversion functions not needed since data not available
convert_trait = None
convert_gender = None
# Save metadata for initial filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# Skip clinical feature extraction since trait data is not available
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
requires_gene_mapping = True
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping columns
print("\nSample mapping columns ('ID' and gene_assignment):")
print(gene_annotation[['ID', 'gene_assignment']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'gene_assignment' column: Gene information")
# Get mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to convert probe IDs to gene symbols
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape and preview to verify mapping
print("Shape after mapping:", gene_data.shape)
print("\nPreview of mapped gene expression data:")
print(gene_data.head())
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# Since trait data is not available, mark dataset as unusable
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True,
df=gene_data,
note="Dataset lacks trait information required for analysis"
)