|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Alopecia" |
|
cohort = "GSE80342" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Alopecia" |
|
in_cohort_dir = "../DATA/GEO/Alopecia/GSE80342" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Alopecia/GSE80342.csv" |
|
out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE80342.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE80342.csv" |
|
json_path = "./output/preprocess/3/Alopecia/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 7 |
|
|
|
age_row = 4 |
|
|
|
gender_row = 3 |
|
|
|
|
|
def convert_trait(x): |
|
"""Convert alopecia areata type to binary (0: control, 1: case)""" |
|
if not x or ':' not in x: |
|
return None |
|
value = x.split(':', 1)[1].strip() |
|
if value == 'healthy_control': |
|
return 0 |
|
elif value in ['persistent_patchy', 'severe_patchy', 'totalis', 'universalis']: |
|
return 1 |
|
return None |
|
|
|
def convert_age(x): |
|
"""Convert age to continuous numeric value""" |
|
if not x or ':' not in x: |
|
return None |
|
try: |
|
return float(x.split(':', 1)[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
"""Convert gender to binary (0: female, 1: male)""" |
|
if not x or ':' not in x: |
|
return None |
|
value = x.split(':', 1)[1].strip() |
|
if value == 'F': |
|
return 0 |
|
elif value == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True |
|
) |
|
|
|
|
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview_result = preview_df(clinical_features) |
|
print("Preview of clinical features:") |
|
print(preview_result) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation shape:", gene_annotation.shape) |
|
print("\nGene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
print("\nNumber of non-null values in each column:") |
|
print(gene_annotation.count()) |
|
|
|
|
|
print("\nSample mapping columns ('ID' and 'Gene Symbol'):") |
|
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string()) |
|
|
|
print("\nNote: Gene mapping will use:") |
|
print("'ID' column: Probe identifiers") |
|
print("'Gene Symbol' column: Gene information") |
|
|
|
mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping) |
|
|
|
|
|
print("Gene data shape after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene data:") |
|
print(gene_data.head()) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
try: |
|
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=linked_data, |
|
note="Gene expression data successfully mapped and linked with clinical features" |
|
) |
|
|
|
|
|
if is_usable and not is_trait_biased: |
|
linked_data.to_csv(out_data_file) |
|
|
|
except Exception as e: |
|
print(f"Error in data linking and processing: {str(e)}") |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=True, |
|
df=pd.DataFrame(), |
|
note=f"Data processing failed: {str(e)}" |
|
) |